Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cossio/standardizedrestrictedboltzmannmachines.jl
https://github.com/cossio/standardizedrestrictedboltzmannmachines.jl
Last synced: 10 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/cossio/standardizedrestrictedboltzmannmachines.jl
- Owner: cossio
- License: mit
- Created: 2023-04-20T20:55:33.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-07-08T19:36:28.000Z (4 months ago)
- Last Synced: 2024-07-10T02:29:18.993Z (4 months ago)
- Language: Jupyter Notebook
- Size: 347 KB
- Stars: 0
- Watchers: 2
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE.md
Awesome Lists containing this project
README
# StandardizedRestrictedBoltzmannMachines Julia package
Train and sample a *standardized* Restricted Boltzmann machine in Julia. The energy is given by:
$$E(\mathbf{v},\mathbf{h}) = - \sum_{i}\theta_{i}v_{i} - \sum_{\mu}\theta_{\mu}h_{\mu} - \sum_{i\mu}w_{i\mu} \frac{v_{i} - \lambda_{i}}{\sigma_{i}}\frac{h_{\mu} - \lambda_{\mu}}{\sigma_{\mu}}$$
with some offset parameters $\lambda_i,\lambda_\mu$ and scaling parameters $\sigma_i,\sigma_\mu$. Usually $\lambda_i,\lambda_\mu$ track the mean activities of visible and hidden units, while $\sigma_i,\sigma_\mu$ track their standard deviations.
## Installation
This package is registered. Install with:
```julia
using Pkg
Pkg.add("StandardizedRestrictedBoltzmannMachines")
```This package does not export any symbols.
## Related
* https://github.com/cossio/RestrictedBoltzmannMachines.jl.