Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/crflynn/pbspark

protobuf pyspark conversion
https://github.com/crflynn/pbspark

dataframe protobuf protocol-buffers pyspark spark

Last synced: 3 months ago
JSON representation

protobuf pyspark conversion

Awesome Lists containing this project

README

        

# pbspark

This package provides a way to convert protobuf messages into pyspark dataframes and vice versa using pyspark `udf`s.

## Installation

To install:

```bash
pip install pbspark
```

## Usage

Suppose we have a pyspark DataFrame which contains a column `value` which has protobuf encoded messages of our `SimpleMessage`:

```protobuf
syntax = "proto3";

package example;

message SimpleMessage {
string name = 1;
int64 quantity = 2;
float measure = 3;
}
```

### Basic conversion functions

There are two functions for operating on columns, `to_protobuf` and `from_protobuf`. These operations convert to/from an encoded protobuf column to a column of a struct representing the inferred message structure. `MessageConverter` instances (discussed below) can optionally be passed to these functions.

```python
from pyspark.sql.session import SparkSession
from example.example_pb2 import SimpleMessage
from pbspark import from_protobuf
from pbspark import to_protobuf

spark = SparkSession.builder.getOrCreate()

example = SimpleMessage(name="hello", quantity=5, measure=12.3)
data = [{"value": example.SerializeToString()}]
df_encoded = spark.createDataFrame(data)

df_decoded = df_encoded.select(from_protobuf(df_encoded.value, SimpleMessage).alias("value"))
df_expanded = df_decoded.select("value.*")
df_expanded.show()

# +-----+--------+-------+
# | name|quantity|measure|
# +-----+--------+-------+
# |hello| 5| 12.3|
# +-----+--------+-------+

df_reencoded = df_decoded.select(to_protobuf(df_decoded.value, SimpleMessage).alias("value"))
```

There are two helper functions, `df_to_protobuf` and `df_from_protobuf` for use on dataframes. They have a kwarg `expanded`, which will also take care of expanding/contracting the data between the single `value` column used in these examples and a dataframe which contains a column for each message field. `MessageConverter` instances (discussed below) can optionally be passed to these functions.

```python
from pyspark.sql.session import SparkSession
from example.example_pb2 import SimpleMessage
from pbspark import df_from_protobuf
from pbspark import df_to_protobuf

spark = SparkSession.builder.getOrCreate()

example = SimpleMessage(name="hello", quantity=5, measure=12.3)
data = [{"value": example.SerializeToString()}]
df_encoded = spark.createDataFrame(data)

# expanded=True will perform a `.select("value.*")` after converting,
# resulting in each protobuf field having its own column
df_expanded = df_from_protobuf(df_encoded, SimpleMessage, expanded=True)
df_expanded.show()

# +-----+--------+-------+
# | name|quantity|measure|
# +-----+--------+-------+
# |hello| 5| 12.3|
# +-----+--------+-------+

# expanded=True will first pack data using `struct([df[c] for c in df.columns])`,
# use this if the passed dataframe is already expanded
df_reencoded = df_to_protobuf(df_expanded, SimpleMessage, expanded=True)
```

### Column conversion using the `MessageConverter`

The four helper functions above are also available as methods on the `MessageConverter` class. Using an instance of `MessageConverter` we can decode the column of encoded messages into a column of spark `StructType` and then expand the fields.

```python
from pyspark.sql.session import SparkSession
from pbspark import MessageConverter
from example.example_pb2 import SimpleMessage

spark = SparkSession.builder.getOrCreate()

example = SimpleMessage(name="hello", quantity=5, measure=12.3)
data = [{"value": example.SerializeToString()}]
df_encoded = spark.createDataFrame(data)

mc = MessageConverter()
df_decoded = df_encoded.select(mc.from_protobuf(df_encoded.value, SimpleMessage).alias("value"))
df_expanded = df_decoded.select("value.*")
df_expanded.show()

# +-----+--------+-------+
# | name|quantity|measure|
# +-----+--------+-------+
# |hello| 5| 12.3|
# +-----+--------+-------+

df_expanded.schema
# StructType(List(StructField(name,StringType,true),StructField(quantity,IntegerType,true),StructField(measure,FloatType,true))
```

We can also re-encode them into protobuf.

```python
df_reencoded = df_decoded.select(mc.to_protobuf(df_decoded.value, SimpleMessage).alias("value"))
```

For expanded data, we can also encode after packing into a struct column:

```python
from pyspark.sql.functions import struct

df_unexpanded = df_expanded.select(
struct([df_expanded[c] for c in df_expanded.columns]).alias("value")
)
df_reencoded = df_unexpanded.select(
mc.to_protobuf(df_unexpanded.value, SimpleMessage).alias("value")
)
```

### Conversion details

Internally, `pbspark` uses protobuf's `MessageToDict`, which deserializes everything into JSON compatible objects by default. The exceptions are
* protobuf's bytes type, which `MessageToDict` would decode to a base64-encoded string; `pbspark` will decode any bytes fields directly to a spark `BinaryType`.
* protobuf's well known type, Timestamp type, which `MessageToDict` would decode to a string; `pbspark` will decode any Timestamp messages directly to a spark `TimestampType` (via python datetime objects).
* protobuf's int64 types, which `MessageToDict` would decode to a string for compatibility reasons; `pbspark` will decode these to `LongType`.

### Custom conversion of message types

Custom serde is also supported. Suppose we use our `NestedMessage` from the repository's example and we want to serialize the key and value together into a single string.

```protobuf
message NestedMessage {
string key = 1;
string value = 2;
}
```

We can create and register a custom serializer with the `MessageConverter`.

```python
from pbspark import MessageConverter
from example.example_pb2 import ExampleMessage
from example.example_pb2 import NestedMessage
from pyspark.sql.types import StringType

mc = MessageConverter()

# register a custom serializer
# this will serialize the NestedMessages into a string rather than a
# struct with `key` and `value` fields
encode_nested = lambda message: message.key + ":" + message.value

mc.register_serializer(NestedMessage, encode_nested, StringType())

# ...

from pyspark.sql.session import SparkSession
from pyspark import SparkContext
from pyspark.serializers import CloudPickleSerializer

sc = SparkContext(serializer=CloudPickleSerializer())
spark = SparkSession(sc).builder.getOrCreate()

message = ExampleMessage(nested=NestedMessage(key="hello", value="world"))
data = [{"value": message.SerializeToString()}]
df_encoded = spark.createDataFrame(data)

df_decoded = df_encoded.select(mc.from_protobuf(df_encoded.value, ExampleMessage).alias("value"))
# rather than a struct the value of `nested` is a string
df_decoded.select("value.nested").show()

# +-----------+
# | nested|
# +-----------+
# |hello:world|
# +-----------+
```

### How to write conversion functions

More generally, custom serde functions should be written in the following format.

```python
# Encoding takes a message instance and returns the result
# of the custom transformation.
def encode_nested(message: NestedMessage) -> str:
return message.key + ":" + message.value

# Decoding takes the encoded value, a message instance, and path string
# and populates the fields of the message instance. It returns `None`.
# The path str is used in the protobuf parser to log parse error info.
# Note that the first argument type should match the return type of the
# encoder if using both.
def decode_nested(s: str, message: NestedMessage, path: str):
key, value = s.split(":")
message.key = key
message.value = value
```

### Avoiding PicklingErrors

A seemingly common issue with protobuf and distributed processing is when a `PicklingError` is encountered when transmitting (pickling) protobuf message types from a main process to a fork. To avoid this, you need to ensure that the fully qualified module name in your protoc-generated python file is the same as the module path from which the message type is imported. In other words, for the example here, the descriptor module passed to the builder is `example.example_pb2`

```python
# from example/example_pb2.py
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "example.example_pb2", globals())
^^^^^^^^^^^^^^^^^^^
```

And to import the message type we would call the same module path:

```python
from example.example_pb2 import ExampleMessage
^^^^^^^^^^^^^^^^^^^
```

Note that the import module is the same as the one passed to the builder from the protoc-generated python. If these do not match, then you will encounter a `PicklingError`. From the pickle documentation: *pickle can save and restore class instances transparently, however the class definition must be importable and live in the same module as when the object was stored.*

To ensure that the module path is correct, you should run `protoc` from the relative root path of your proto files. For example, in this project, in the `Makefile` under the `gen` command, we call `protoc` from the project root rather than from within the `example` directory.

```makefile
export PROTO_PATH=.

gen:
poetry run protoc -I $$PROTO_PATH --python_out=$$PROTO_PATH --mypy_out=$$PROTO_PATH --proto_path=$$PROTO_PATH $$PROTO_PATH/example/*.proto
```

### Known issues

`RecursionError` when using self-referencing protobuf messages. Spark schemas do not allow for arbitrary depth, so protobuf messages which are circular- or self-referencing will result in infinite recursion errors when inferring the schema. If you have message structures like this you should resort to creating custom conversion functions, which forcibly limit the structural depth when converting these messages.

## Development

Ensure that [asdf](https://asdf-vm.com/) is installed, then run `make setup`.

* To format code `make fmt`
* To test code `make test`
* To run protoc `make gen`