Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/crflynn/skgrf

scikit-learn compatible Python bindings for grf (generalized random forests) C++ random forest library
https://github.com/crflynn/skgrf

generalized-random-forest machine-learning random-forest scikit-learn

Last synced: about 5 hours ago
JSON representation

scikit-learn compatible Python bindings for grf (generalized random forests) C++ random forest library

Awesome Lists containing this project

README

        

skgrf
=====

|build| |wheels| |rtd| |pypi| |pyversions|

.. |build| image:: https://github.com/crflynn/skgrf/workflows/build_and_test/badge.svg
:target: https://github.com/crflynn/skgrf/actions

.. |wheels| image:: https://github.com/crflynn/skgrf-wheels/workflows/release/badge.svg
:target: https://github.com/crflynn/skgrf/actions

.. |rtd| image:: https://img.shields.io/readthedocs/skgrf.svg
:target: http://skgrf.readthedocs.io/en/latest/

.. |pypi| image:: https://img.shields.io/pypi/v/skgrf.svg
:target: https://pypi.python.org/pypi/skgrf

.. |pyversions| image:: https://img.shields.io/pypi/pyversions/skgrf.svg
:target: https://pypi.python.org/pypi/skgrf

``skgrf`` provides `scikit-learn `__ compatible Python bindings to the C++ random forest implementation, `grf `__, using `Cython `__.

The latest release of ``skgrf`` uses version `2.1.0 `__ of ``grf``.

``skgrf`` is still in development. Please create issues for any discrepancies or errors. PRs welcome.

Documentation
-------------

* `stable `__
* `latest `__

Installation
------------

``skgrf`` is available on `pypi `__ and can be installed via pip:

.. code-block:: bash

pip install skgrf

Estimators
----------

* GRFForestCausalRegressor
* GRFForestInstrumentalRegressor
* GRFForestLocalLinearRegressor
* GRFForestQuantileRegressor
* GRFForestRegressor
* GRFBoostedForestRegressor
* GRFForestSurvival

Usage
-----

GRFForestRegressor
~~~~~~~~~~~~~~~~~~

The ``GRFForestRegressor`` predictor uses ``grf``'s RegressionPredictionStrategy class.

.. code-block:: python

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from skgrf.ensemble import GRFForestRegressor

X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)

forest = GRFForestRegressor()
forest.fit(X_train, y_train)

predictions = forest.predict(X_test)
print(predictions)
# [31.81349144 32.2734354 16.51560285 11.90284392 39.69744341 21.30367911
# 19.52732937 15.82126562 26.49528961 11.27220097 16.02447197 20.01224404
# ...
# 20.70674263 17.09041289 12.89671205 20.79787926 21.18317924 25.45553279
# 20.82455595]

GRFForestQuantileRegressor
~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``GRFForestQuantileRegressor`` predictor uses ``grf``'s QuantilePredictionStrategy class.

.. code-block:: python

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from skgrf.ensemble import GRFForestQuantileRegressor

X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)

forest = GRFForestQuantileRegressor(quantiles=[0.1, 0.9])
forest.fit(X_train, y_train)

predictions = forest.predict(X_test)
print(predictions)
# [[21.9 50. ]
# [ 8.5 24.5]
# ...
# [ 8.4 18.6]
# [ 8.1 20. ]]

License
-------

``skgrf`` is licensed under `GPLv3 `__.

Development
-----------

To develop locally, it is recommended to have ``asdf``, ``make`` and a C++ compiler already installed. After cloning, run ``make setup``. This will setup the grf submodule, install python and poetry from ``.tool-versions``, install dependencies using poetry, copy the grf source code into skgrf, and then build and install skgrf in the local virtualenv.

To format code, run ``make fmt``. This will run isort and black against the .py files.

To run tests and inspect coverage, run ``make test`` or ``make xtest`` for testing in parallel.

To rebuild in place after making changes, run ``make build``.

To create python package artifacts, run ``make dist``.

To build and view documentation, run ``make docs``.