Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/crflynn/stochastic

Generate realizations of stochastic processes in python.
https://github.com/crflynn/stochastic

probability stochastic stochastic-differential-equations stochastic-processes stochastic-simulation-algorithm stochastic-volatility-models

Last synced: 5 days ago
JSON representation

Generate realizations of stochastic processes in python.

Awesome Lists containing this project

README

        

stochastic
==========

|build| |rtd| |codecov| |pypi| |pyversions|

.. |build| image:: https://github.com/crflynn/stochastic/actions/workflows/build.yml/badge.svg
:target: https://github.com/crflynn/stochastic/actions

.. |rtd| image:: https://img.shields.io/readthedocs/stochastic.svg
:target: http://stochastic.readthedocs.io/en/latest/

.. |codecov| image:: https://codecov.io/gh/crflynn/stochastic/branch/master/graphs/badge.svg
:target: https://codecov.io/gh/crflynn/stochastic

.. |pypi| image:: https://img.shields.io/pypi/v/stochastic.svg
:target: https://pypi.python.org/pypi/stochastic

.. |pyversions| image:: https://img.shields.io/pypi/pyversions/stochastic.svg
:target: https://pypi.python.org/pypi/stochastic

A python package for generating realizations of stochastic processes.

Installation
------------

The ``stochastic`` package is available on pypi and can be installed using pip

.. code-block:: shell

pip install stochastic

Dependencies
~~~~~~~~~~~~

Stochastic uses ``numpy`` for many calculations and ``scipy`` for sampling
specific random variables.

Processes
---------

This package offers a number of common discrete-time, continuous-time, and
noise process objects for generating realizations of stochastic processes as
``numpy`` arrays.

The diffusion processes are approximated using the Euler–Maruyama method.

Here are the currently supported processes and their class references within
the package.

* stochastic.processes

* continuous

* BesselProcess
* BrownianBridge
* BrownianExcursion
* BrownianMeander
* BrownianMotion
* CauchyProcess
* FractionalBrownianMotion
* GammaProcess
* GeometricBrownianMotion
* InverseGaussianProcess
* MixedPoissonProcess
* MultifractionalBrownianMotion
* PoissonProcess
* SquaredBesselProcess
* VarianceGammaProcess
* WienerProcess

* diffusion

* DiffusionProcess (generalized)
* ConstantElasticityVarianceProcess
* CoxIngersollRossProcess
* ExtendedVasicekProcess
* OrnsteinUhlenbeckProcess
* VasicekProcess

* discrete

* BernoulliProcess
* ChineseRestaurantProcess
* DirichletProcess
* MarkovChain
* MoranProcess
* RandomWalk

* noise

* BlueNoise
* BrownianNoise
* ColoredNoise
* PinkNoise
* RedNoise
* VioletNoise
* WhiteNoise
* FractionalGaussianNoise
* GaussianNoise

Usage patterns
--------------

Sampling
~~~~~~~~

To use ``stochastic``, import the process you want and instantiate with the
required parameters. Every process class has a ``sample`` method for generating
realizations. The ``sample`` methods accept a parameter ``n`` for the quantity
of steps in the realization, but others (Poisson, for instance) may take
additional parameters. Parameters can be accessed as attributes of the
instance.

.. code-block:: python

from stochastic.processes.discrete import BernoulliProcess

bp = BernoulliProcess(p=0.6)
s = bp.sample(16)
success_probability = bp.p

Continuous processes provide a default parameter, ``t``, which indicates the
maximum time of the process realizations. The default value is 1. The sample
method will generate ``n`` equally spaced increments on the
interval ``[0, t]``.

Sampling at specific times
~~~~~~~~~~~~~~~~~~~~~~~~~~

Some continuous processes also provide a ``sample_at()`` method, in which a
sequence of time values can be passed at which the object will generate a
realization. This method ignores the parameter, ``t``, specified on
instantiation.

.. code-block:: python

from stochastic.processes.continuous import BrownianMotion

bm = BrownianMotion(drift=1, scale=1, t=1)
times = [0, 3, 10, 11, 11.2, 20]
s = bm.sample_at(times)

Sample times
~~~~~~~~~~~~

Continuous processes also provide a method ``times()`` which generates the time
values (using ``numpy.linspace``) corresponding to a realization of ``n``
steps. This is particularly useful for plotting your samples.

.. code-block:: python

import matplotlib.pyplot as plt
from stochastic.processes.continuous import FractionalBrownianMotion

fbm = FractionalBrownianMotion(hurst=0.7, t=1)
s = fbm.sample(32)
times = fbm.times(32)

plt.plot(times, s)
plt.show()

Specifying an algorithm
~~~~~~~~~~~~~~~~~~~~~~~

Some processes provide an optional parameter ``algorithm``, in which one can
specify which algorithm to use to generate the realization using the
``sample()`` or ``sample_at()`` methods. See the documentation for
process-specific implementations.

.. code-block:: python

from stochastic.processes.noise import FractionalGaussianNoise

fgn = FractionalGaussianNoise(hurst=0.6, t=1)
s = fgn.sample(32, algorithm='hosking')