Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/crisbal/docker-torch-rnn

Docker images for using torch-rnn
https://github.com/crisbal/docker-torch-rnn

Last synced: 3 days ago
JSON representation

Docker images for using torch-rnn

Awesome Lists containing this project

README

        

# docker-torch-rnn

Docker images for using torch-rnn (https://github.com/jcjohnson/torch-rnn)

## Available tags

* `crisbal/torch-rnn:base`
* Based on `ubuntu:14.04`
* Allows usage of torch-rnn in CPU mode
* `lordalfred/docker-torch-rnn:cuda7.5`
* Based on `nvidia/cuda:7.5-devel-ubuntu14.04`
* Allows usage of torch-rnn in GPU mode (Cuda 7.5 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker
* `lordalfred/docker-torch-rnn:cuda8.0`
* Based on `nvidia/cuda:8.0-devel-ubuntu16.04`
* Allows usage of torch-rnn in GPU mode (Cuda 8.0 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker
* `lordalfred/docker-torch-rnn:cuda9.1`
* Based on `nvidia/cuda:9.1-devel-ubuntu16.04`
* Allows usage of torch-rnn in GPU mode (Cuda 9.1 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker
* `lordalfred/docker-torch-rnn:cuda9.2`
* Based on `nvidia/cuda:9.2-devel-ubuntu16.04`
* Allows usage of torch-rnn in GPU mode (Cuda 9.2 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker
* `lordalfred/docker-torch-rnn:cuda10.0` (**requires nvidia-docker v2**)
* Based on `nvidia/cuda:10.0-devel-ubuntu16.04`
* Allows usage of torch-rnn in GPU mode (Cuda 10.0 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker
* `lordalfred/docker-torch-rnn:10.0-ubuntu18.04` (**requires nvidia-docker v2**)
* Based on `nvidia/cuda:10.0-devel-ubuntu18.04`
* Allows usage of torch-rnn in GPU mode (Cuda 10.0 support)
* Only run with nvidia-docker https://github.com/NVIDIA/nvidia-docker

## How to

More details here: https://github.com/jcjohnson/torch-rnn#usage

### CPU Only

1. Start bash in the container
* `docker run --rm -ti crisbal/torch-rnn:base bash`

2. Preprocess the sample data

```
python scripts/preprocess.py \
--input_txt data/tiny-shakespeare.txt \
--output_h5 data/tiny-shakespeare.h5 \
--output_json data/tiny-shakespeare.json
```

3. Train

```
th train.lua \
-input_h5 data/tiny-shakespeare.h5 \
-input_json data/tiny-shakespeare.json \
-gpu -1
```

4. Sample
* `th sample.lua -checkpoint cv/checkpoint_10000.t7 -length 2000 -gpu -1`

### CUDA

1. Install nvidia-docker
* https://github.com/NVIDIA/nvidia-docker
2. Start bash in the container
* `nvidia-docker run --rm -ti lordalfred/docker-torch-rnn:cuda10.0 bash`
3. Preprocess the sample data

```
python scripts/preprocess.py \
--input_txt data/tiny-shakespeare.txt \
--output_h5 data/tiny-shakespeare.h5 \
--output_json data/tiny-shakespeare.json
```

4. Train

```
th train.lua \
-input_h5 data/tiny-shakespeare.h5 \
-input_json data/tiny-shakespeare.json
```

5. Sample
* `th sample.lua -checkpoint cv/checkpoint_10000.t7 -length 2000`