Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/crownpku/Rasa_NLU_Chi

Turn Chinese natural language into structured data 中文自然语言理解
https://github.com/crownpku/Rasa_NLU_Chi

chatbot chinese natural-language

Last synced: about 2 months ago
JSON representation

Turn Chinese natural language into structured data 中文自然语言理解

Awesome Lists containing this project

README

        

# Rasa NLU for Chinese, a fork from RasaHQ/rasa_nlu.

## Please refer to newest instructions at [official Rasa NLU document](https://nlu.rasa.com/)

## [中文Blog](http://www.crownpku.com/2017/07/27/%E7%94%A8Rasa_NLU%E6%9E%84%E5%BB%BA%E8%87%AA%E5%B7%B1%E7%9A%84%E4%B8%AD%E6%96%87NLU%E7%B3%BB%E7%BB%9F.html)

![](http://www.crownpku.com/images/201707/5.jpg)
![](http://www.crownpku.com/images/201707/4.jpg)

### Files you should have:

* data/total_word_feature_extractor_zh.dat

Trained from Chinese corpus by MITIE wordrep tools (takes 2-3 days for training)

For training, please build the [MITIE Wordrep Tool](https://github.com/mit-nlp/MITIE/tree/master/tools/wordrep). Note that Chinese corpus should be tokenized first before feeding into the tool for training. Close-domain corpus that best matches user case works best.

A trained model from Chinese Wikipedia Dump and Baidu Baike can be downloaded from [中文Blog](http://www.crownpku.com/2017/07/27/%E7%94%A8Rasa_NLU%E6%9E%84%E5%BB%BA%E8%87%AA%E5%B7%B1%E7%9A%84%E4%B8%AD%E6%96%87NLU%E7%B3%BB%E7%BB%9F.html).

* data/examples/rasa/demo-rasa_zh.json

Should add as much examples as possible.

### Usage:

1. Clone this project, and run
```
python setup.py install
```

2. Modify configuration.

Currently for Chinese we have two pipelines:

Use MITIE+Jieba (sample_configs/config_jieba_mitie.yml):
```yaml
language: "zh"

pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_classifier_mitie"
```

RECOMMENDED: Use MITIE+Jieba+sklearn (sample_configs/config_jieba_mitie_sklearn.yml):
```yaml
language: "zh"

pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_mitie"
- name: "intent_classifier_sklearn"
```

3. (Optional) Use Jieba User Defined Dictionary or Switch Jieba Default Dictionoary:

You can put in **file path** or **directory path** as the "user_dicts" value. (sample_configs/config_jieba_mitie_sklearn_plus_dict_path.yml)

```yaml
language: "zh"

pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
default_dict: "./default_dict.big"
user_dicts: "./jieba_userdict"
# user_dicts: "./jieba_userdict/jieba_userdict.txt"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_mitie"
- name: "intent_classifier_sklearn"
```

4. Train model by running:

If you specify your project name in configure file, this will save your model at /models/your_project_name.

Otherwise, your model will be saved at /models/default

```
python -m rasa_nlu.train -c sample_configs/config_jieba_mitie_sklearn.yml --data data/examples/rasa/demo-rasa_zh.json --path models
```

5. Run the rasa_nlu server:

```
python -m rasa_nlu.server -c sample_configs/config_jieba_mitie_sklearn.yml --path models
```

6. Open a new terminal and now you can curl results from the server, for example:

```
$ curl -XPOST localhost:5000/parse -d '{"q":"我发烧了该吃什么药?", "project": "rasa_nlu_test", "model": "model_20170921-170911"}' | python -mjson.tool
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 652 0 552 100 100 157 28 0:00:03 0:00:03 --:--:-- 157
{
"entities": [
{
"end": 3,
"entity": "disease",
"extractor": "ner_mitie",
"start": 1,
"value": "发烧"
}
],
"intent": {
"confidence": 0.5397186422631861,
"name": "medical"
},
"intent_ranking": [
{
"confidence": 0.5397186422631861,
"name": "medical"
},
{
"confidence": 0.16206323981749196,
"name": "restaurant_search"
},
{
"confidence": 0.1212448457737397,
"name": "affirm"
},
{
"confidence": 0.10333600028547868,
"name": "goodbye"
},
{
"confidence": 0.07363727186010374,
"name": "greet"
}
],
"text": "我发烧了该吃什么药?"
}
```