Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/crownpku/Rasa_NLU_Chi
Turn Chinese natural language into structured data 中文自然语言理解
https://github.com/crownpku/Rasa_NLU_Chi
chatbot chinese natural-language
Last synced: about 2 months ago
JSON representation
Turn Chinese natural language into structured data 中文自然语言理解
- Host: GitHub
- URL: https://github.com/crownpku/Rasa_NLU_Chi
- Owner: crownpku
- License: apache-2.0
- Created: 2017-06-21T03:00:36.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-07-30T21:17:04.000Z (6 months ago)
- Last Synced: 2024-11-20T21:50:58.425Z (about 2 months ago)
- Topics: chatbot, chinese, natural-language
- Language: Python
- Homepage:
- Size: 2.82 MB
- Stars: 1,512
- Watchers: 73
- Forks: 422
- Open Issues: 84
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.rst
- Funding: .github/FUNDING.yml
- License: LICENSE.txt
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- my-awesome - crownpku/Rasa_NLU_Chi - language pushed_at:2024-07 star:1.5k fork:0.4k Turn Chinese natural language into structured data 中文自然语言理解 (Python)
README
# Rasa NLU for Chinese, a fork from RasaHQ/rasa_nlu.
## Please refer to newest instructions at [official Rasa NLU document](https://nlu.rasa.com/)
## [中文Blog](http://www.crownpku.com/2017/07/27/%E7%94%A8Rasa_NLU%E6%9E%84%E5%BB%BA%E8%87%AA%E5%B7%B1%E7%9A%84%E4%B8%AD%E6%96%87NLU%E7%B3%BB%E7%BB%9F.html)
![](http://www.crownpku.com/images/201707/5.jpg)
![](http://www.crownpku.com/images/201707/4.jpg)### Files you should have:
* data/total_word_feature_extractor_zh.dat
Trained from Chinese corpus by MITIE wordrep tools (takes 2-3 days for training)
For training, please build the [MITIE Wordrep Tool](https://github.com/mit-nlp/MITIE/tree/master/tools/wordrep). Note that Chinese corpus should be tokenized first before feeding into the tool for training. Close-domain corpus that best matches user case works best.
A trained model from Chinese Wikipedia Dump and Baidu Baike can be downloaded from [中文Blog](http://www.crownpku.com/2017/07/27/%E7%94%A8Rasa_NLU%E6%9E%84%E5%BB%BA%E8%87%AA%E5%B7%B1%E7%9A%84%E4%B8%AD%E6%96%87NLU%E7%B3%BB%E7%BB%9F.html).
* data/examples/rasa/demo-rasa_zh.json
Should add as much examples as possible.
### Usage:
1. Clone this project, and run
```
python setup.py install
```2. Modify configuration.
Currently for Chinese we have two pipelines:
Use MITIE+Jieba (sample_configs/config_jieba_mitie.yml):
```yaml
language: "zh"pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_classifier_mitie"
```RECOMMENDED: Use MITIE+Jieba+sklearn (sample_configs/config_jieba_mitie_sklearn.yml):
```yaml
language: "zh"pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_mitie"
- name: "intent_classifier_sklearn"
```3. (Optional) Use Jieba User Defined Dictionary or Switch Jieba Default Dictionoary:
You can put in **file path** or **directory path** as the "user_dicts" value. (sample_configs/config_jieba_mitie_sklearn_plus_dict_path.yml)
```yaml
language: "zh"pipeline:
- name: "nlp_mitie"
model: "data/total_word_feature_extractor_zh.dat"
- name: "tokenizer_jieba"
default_dict: "./default_dict.big"
user_dicts: "./jieba_userdict"
# user_dicts: "./jieba_userdict/jieba_userdict.txt"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_mitie"
- name: "intent_classifier_sklearn"
```4. Train model by running:
If you specify your project name in configure file, this will save your model at /models/your_project_name.
Otherwise, your model will be saved at /models/default
```
python -m rasa_nlu.train -c sample_configs/config_jieba_mitie_sklearn.yml --data data/examples/rasa/demo-rasa_zh.json --path models
```5. Run the rasa_nlu server:
```
python -m rasa_nlu.server -c sample_configs/config_jieba_mitie_sklearn.yml --path models
```6. Open a new terminal and now you can curl results from the server, for example:
```
$ curl -XPOST localhost:5000/parse -d '{"q":"我发烧了该吃什么药?", "project": "rasa_nlu_test", "model": "model_20170921-170911"}' | python -mjson.tool
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 652 0 552 100 100 157 28 0:00:03 0:00:03 --:--:-- 157
{
"entities": [
{
"end": 3,
"entity": "disease",
"extractor": "ner_mitie",
"start": 1,
"value": "发烧"
}
],
"intent": {
"confidence": 0.5397186422631861,
"name": "medical"
},
"intent_ranking": [
{
"confidence": 0.5397186422631861,
"name": "medical"
},
{
"confidence": 0.16206323981749196,
"name": "restaurant_search"
},
{
"confidence": 0.1212448457737397,
"name": "affirm"
},
{
"confidence": 0.10333600028547868,
"name": "goodbye"
},
{
"confidence": 0.07363727186010374,
"name": "greet"
}
],
"text": "我发烧了该吃什么药?"
}
```