Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/crystal-community/bloom_filter
Bloom filter implementation in Crystal lang
https://github.com/crystal-community/bloom_filter
bloom-filter crystal
Last synced: 10 days ago
JSON representation
Bloom filter implementation in Crystal lang
- Host: GitHub
- URL: https://github.com/crystal-community/bloom_filter
- Owner: crystal-community
- License: mit
- Created: 2016-02-06T11:02:48.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2023-08-28T12:42:43.000Z (over 1 year ago)
- Last Synced: 2024-10-30T16:40:44.252Z (about 1 month ago)
- Topics: bloom-filter, crystal
- Language: Crystal
- Size: 28.3 KB
- Stars: 34
- Watchers: 5
- Forks: 6
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- awesome-crystal - bloom_filter - Implementation of Bloom filter (Caching)
- awesome-crystal - bloom_filter - Implementation of Bloom filter (Caching)
README
# Bloom Filter [![Build Status](https://travis-ci.org/crystal-community/bloom_filter.svg?branch=master)](https://travis-ci.org/crystal-community/bloom_filter)
Implementation of [Bloom Filter](https://en.wikipedia.org/wiki/Bloom_filter) in [Crystal lang](http://crystal-lang.org/).
* [Installation](#installation)
* [Usage](#usage)
* [Basic](#basic)
* [Creating a filter with optimal parameters](#creating-a-filter-with-optimal-parameters)
* [Dumping to file and loading](#dumping-into-a-file-and-loading)
* [Union and intersection](#union-and-intersection)
* [Visualization](#visualization)
* [Benchmark](#benchmark)
* [Contributors](#contributors)## Installation
Add this to your application's `shard.yml`:
```yaml
dependencies:
bloom_filter:
github: crystal-community/bloom_filter
```## Usage
### Basic
```crystal
require "bloom_filter"# Create filter with bitmap size of 32 bytes and 3 hash functions.
filter = BloomFilter.new(bytesize = 32, hash_num = 3)# Insert elements
filter.insert("Esperanto")
filter.insert("Toki Pona")# Check elements presence
filter.has?("Esperanto") # => true
filter.has?("Toki Pona") # => true
filter.has?("Englsh") # => false
```### Creating a filter with optimal parameters
Based on your needs(expected number of items and desired probability of false positives),
your can create an optimal bloom filter:```crystal
# Create a filter, that with one million inserted items, gives 2% of false positives for #has? method
filter = BloomFilter.new_optimal(1_000_000, 0.02)
filter.bytesize # => 1017796 (993Kb)
filter.hash_num # => 6
```### Dumping into a file and loading
It's possible to save existing bloom filter as a binary file and then load it back.
```crystal
filter = BloomFilter.new_optimal(2, 0.01)
filter.insert("Esperanto")
filter.dump_file("/tmp/bloom_languages")loaded_filter = BloomFilter.load_file("/tmp/bloom_languages")
loaded_filter.has?("Esperanto") # => true
loaded_filter.has?("English") # => false
```### Union and intersection
Having two filters of the same size and number of hash functions, it's possible
to perform union and intersection operations:```crystal
f1 = BloomFilter.new(32, 3)
f1.insert("Esperanto")
f1.insert("Spanish")f2 = BloomFilter.new(32, 3)
f2.insert("Esperanto")
f2.insert("English")# Union
f3 = f1 | f2
f3.has?("Esperanto") # => true
f3.has?("Spanish") # => true
f3.has?("English") # => true# Intersection
f4 = f1 & f2
f4.has?("Esperanto") # => true
f4.has?("Spanish") # => false
f4.has?("English") # => false
```### Visualization
If you want to see how your filter looks like, you can visualize it:
```crystal
f1 = BloomFilter.new(16, 2)
f1.insert("Esperanto")
puts "f1 = (Esperanto)"
puts f1.visualizef2 = BloomFilter.new(16, 2)
f2.insert("Spanish")
puts "f2 = (Spanish)"
puts f2.visualizef3 = f1 | f2
puts "f3 = f1 | f2 = (Esperanto, Spanish)"
puts f3.visualize
```Output:
```
f1 = (Esperanto)
░░░░░░░░ ░░░░░░█░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░
░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░█ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░f2 = (Spanish)
░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░
░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░█░ ░█░░░░░░f3 = f1 | f2 = (Esperanto, Spanish)
░░░░░░░░ ░░░░░░█░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░
░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░░ ░░░░░░░█ ░░░░░░░░ ░░░░░░█░ ░█░░░░░░
```
In this way, you can actually see which bits are set:)## Benchmark
Performance of Bloom filter depends on the following parameters:
* Size of the filter
* Number of hash functions
* Length of the input stringTo run benchmark from `./samples/benchmark.cr`, simply run make task:
```
$ make benchmarkNumber of items: 100000000
Filter size: 117005Kb
Hash functions: 7
String size: 13user system total real
insert 0.004227 0.000000 0.004227 ( 2.769349)
has? (present) 0.007980 0.000000 0.007980 ( 5.223778)
has? (missing) 0.004318 0.000000 0.004318 ( 2.829521)
```## Contributors
- [greyblake](https://github.com/greyblake) Potapov Sergey - creator, maintainer
- [funny-falcon](https://github.com/funny-falcon) Sokolov Yura - better hash algorithms