Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/csailvision/gandissect

Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://gandissect.csail.mit.edu/
https://github.com/csailvision/gandissect

deep-learning gan generative-adversarial-network image-manipulation interactive-visualizations interpretable-ml pytorch

Last synced: 7 days ago
JSON representation

Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://gandissect.csail.mit.edu/

Awesome Lists containing this project

README

        

# GANDissect

[**Project**](https://gandissect.csail.mit.edu/) | [**Demo**](http://gandissect.res.ibm.com/ganpaint.html?project=churchoutdoor&layer=layer4) | [**Paper**](https://arxiv.org/pdf/1811.10597.pdf) | [**Video**](http://tiny.cc/gandissect)

[GAN Dissection](https://gandissect.csail.mit.edu/) is a way to inspect the internal representations of a generative adversarial network (GAN) to understand how internal units align with human-interpretable concepts. It is part of [NetDissect](https://netdissect.csail.mit.edu/).

This repo allows you to dissect a GAN model. It provides the dissection results as a static summary or as an interactive visualization. Try our interactive [GANPaint demo](http://gandissect.res.ibm.com/ganpaint.html?project=churchoutdoor&layer=layer4) to interact with GANs and draw images.

## Overview

[Visualizing and Understanding Generative Adversarial Networks](http://gandissect.csail.mit.edu)

[David Bau](http://people.csail.mit.eduÂ/davidbau/home/), [Jun-Yan Zhu](http://people.csail.mit.edu/junyanz/), [Hendrik Strobelt](http://hendrik.strobelt.com/), [Bolei Zhou](http://people.csail.mit.edu/bzhou/), [Joshua B. Tenenbaum](http://web.mit.edu/cocosci/josh.html), [William T. Freeman](https://billf.mit.edu/), [Antonio Torralba](http://web.mit.edu/torralba/www/)

MIT CSAIL, MIT-IBM Watson AI Lab, CUHK, IBM Research

In arXiv, 2018.

## Analysis and Applications
### Interpretable Units in GANs

### Analyzing different layers

### Diagnosing and improving GANs

### Removing objects from conference rooms

### Removing windows from different natural scenes

### Inserting new objects into images

## Release history
v 0.9 alpha - Nov 26, 2018

## Getting Started
Let's set up the environment and dissect a `churchoutdoor` GAN. This requires some CUDA-enabled GPU and some disk space.

### Setup

To install everything needed from this repo, have `conda` available,
and run:

```
script/setup_env.sh # Create a conda environment with dependencies
script/make_dirs.sh # Create the dataset and dissect directories
script/download_data.sh # Download support data and demo GANs
source activate netd # Enter the conda environment
pip install -v -e . # Link the local netdissect package into the env
```

Details. The code depends on python 3, Pytorch 4.1, and several other
packages. For conda users, `script/environment.yml` provides the details
of the dependencies. For pip users, `setup.py` lists everything needed.

Data. The `download_data.sh` script downloads the segmentation dataset
used to dissect classifiers, the segmentation network used to dissect GANs,
and several example GAN models to dissect. The downloads will go into
the directories `dataset/` and `models/`. If you do not wish to download
the example networks, `python -m netdissect --download` will download
just the data and models needed for netdissect itself.

### Dissecting a GAN

GAN example: to dissect three layers of the LSUN living room progressive
GAN trained by Karras:

```
python -m netdissect \
--gan \
--model "netdissect.proggan.from_pth_file('models/karras/livingroom_lsun.pth')" \
--outdir "dissect/livingroom" \
--layer layer1 layer4 layer7 \
--size 1000
```

The result is a static HTML page at `dissect/livingroom/dissect.html`, and
a JSON file of metrics at `dissect/livingroom/dissect.json`.

You can test your own model: the `--model` argument is a fully-qualified
python function or constructor for loading the GAN to test. The
`--layer` names are fully-qualified (`state_dict`-style) names for layers.

By default, a scene-based segmentation is used but a different segmenter class
can be substituted by supplying an alternate class constructor to
`--segmenter`. See `netdissect/segmenter.py` for the segmenter base class.

## Running a GAN editing server (alpha)

Once a GAN is dissected, you can run a web server that provides an API
that generates images with (optional) interventions.

```
python -m netdissect.server --address 0.0.0.0
```

The editing UI (right) is served at [http://localhost:5001/](http://localhost:5001/) .

Other URLs:

- [http://localhost:5001/api/ui](http://localhost:5001/api/ui) is the OpenAPI/swagger UI for directly
testing GAN interventions.
- [http://localhost:5001/data/livingroom/dissect.html](http://localhost:5001/data/livingroom/dissect.html) static net
dissection reports.
- [http://localhost:5001/data/livingroom/edit.html](http://localhost:5001/data/livingroom/edit.html) a dissection-based
interface for testing interventions.
- TODO: [http://localhost:5001/ganpaint.html](http://localhost:5001/ganpaint.html) will serve GANpaint

## Advanced Level

### Dissecting a classifier (NetDissect)

Classifier example: to dissect three layers of the pretrained `alexnet` in `torchvision`:
```bash
python -m netdissect \
--model "torchvision.models.alexnet(pretrained=True)" \
--layers features.6:conv3 features.8:conv4 features.10:conv5 \
--imgsize 227 \
--outdir dissect/alexnet-imagenet
```

No special web server for a classifier.

### Command Line Details

Documentation for the netdissect command-line utility.

```
usage: python -m netdissect [-h] [--model MODEL] [--pthfile PTHFILE]
[--outdir OUTDIR] [--layers LAYERS [LAYERS ...]]
[--segments SEGMENTS] [--segmenter SEGMENTER]
[--download] [--imgsize IMGSIZE]
[--netname NETNAME] [--meta META [META ...]]
[--examples EXAMPLES] [--size SIZE]
[--batch_size BATCH_SIZE]
[--num_workers NUM_WORKERS]
[--quantile_threshold {[0-1],iqr}] [--no-labels]
[--maxiou] [--covariance] [--no-images]
[--no-report] [--no-cuda] [--gen] [--gan]
[--perturbation PERTURBATION] [--add_scale_offset]
[--quiet]
```

optional arguments:

```
-h, --help show this help message and exit
--model MODEL constructor for the model to test
--pthfile PTHFILE filename of the .pth file for the model
--outdir OUTDIR directory for dissection output
--layers LAYERS [LAYERS ...]
space-separated list of layer names to dissect, in the
form layername[:reportedname]
--segments SEGMENTS directory containing segmentation dataset
--segmenter SEGMENTER
constructor for a segmenter class
--download downloads Broden dataset if needed
--imgsize IMGSIZE input image size to use
--netname NETNAME name for the network in generated reports
--meta META [META ...]
json files of metadata to add to report
--examples EXAMPLES number of image examples per unit
--size SIZE dataset subset size to use
--batch_size BATCH_SIZE
batch size for a forward pass
--num_workers NUM_WORKERS
number of DataLoader workers
--quantile_threshold {[0-1],iqr}
quantile to use for masks
--no-labels disables labeling of units
--maxiou enables maxiou calculation
--covariance enables covariance calculation
--no-images disables generation of unit images
--no-report disables generation report summary
--no-cuda disables CUDA usage
--gen test a generator model (e.g., a GAN)
--gan synonym for --gen
--perturbation PERTURBATION
the filename of perturbation attack to apply
--add_scale_offset offsets masks according to stride and padding
--quiet silences console output
```

### API, for classifiers

It can be used from code as a function, as follows:

1. Load up the convolutional model you wish to dissect, and call
`imodel = InstrumentedModel(model)` and then
`imodel.retain_layers([layernames,..])` to instrument the model.
2. Load the segmentation dataset using the BrodenDataset class;
use the `transform_image` argument to normalize images to
be suitable for the model, and the `size` argument to truncate the dataset.
3. Choose a directory in which to write the output, and call
`dissect(outdir, imodel, dataset)`.

A quick approximate dissection can be done by reducing the `size`
of the `BrodenDataset`. Generating example images can be time-consuming
and the number of images can be set via `examples_per_unit`.

Example:

```
from netdissect import InstrumentedModel, dissect
from netdissect import BrodenDataset

model = InstrumentedModel(load_my_model())
model.eval()
model.cuda()
model.retain_layers(['conv1', 'conv2', 'conv3', 'conv4', 'conv5'])
bds = BrodenDataset('dataset/broden1_227',
transform_image=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV)]),
size=10000)
dissect('result/dissect', model, bds,
batch_size=100,
examples_per_unit=10)
```

The Broden dataset is oriented towards semantic objects, parts, material, colors, etc that are found in natural scene photographs.
If you want to analyze your model with a different semantic segmentation, you can substitute a different segmentation dataset and supply a `segrunner`, an argument that describes how to get segmentations and RGB images from the dataset. See `ClassifierSegRunner` for the details.

### API, for generators

Similarly:

1. Load up the generator model wish to dissect, and call
`retain_layers(model, [layernames,..])` to instrument the model.
2. Create a dataset of z input samples for testing. If your model
uses a uniform normal distribution, z_dataset_for_model will make one.
3. Choose a directory in which to write the output, and call
`dissect(outdir, model, dataset, segrunner=GeneratorSegRunner())`.

The time for the dissection is proportional to the number of samples
in the dataset.

```
from netdissect import InstrumentedModel, dissect
from netdissect import z_dataset_for_model, GeneratorSegRunner

model = InstrumentedModel(load_my_model())
model.eval()
model.cuda()
model.retain_layers(model, ['layer3', 'layer4', 'layer5'])
zds = z_dataset_for_model(size, model)
dissect('result/gandissect', model, zds,
segrunner=GeneratorSegRunner(),
batch_size=100,
examples_per_unit=10)
```

The `GeneratorSegRunner` defaults to a running a semantic segmentation network oriented towards semantic objects, parts, and materials found in natural scene photographs. To use a different semantic segmentation, you can supply a custom `Segmenter` subclass to the constructor of `GeneratorSegRunner`.

## Citation
If you use this code for your research, please cite our [paper](https://arxiv.org/pdf/1811.10597.pdf):
```
@inproceedings{bau2019gandissect,
title={GAN Dissection: Visualizing and Understanding Generative Adversarial Networks},
author={Bau, David and Zhu, Jun-Yan and Strobelt, Hendrik and Zhou, Bolei and Tenenbaum, Joshua B. and Freeman, William T. and Torralba, Antonio},
booktitle={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2019}
}
```