Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/csd111/dereverberation
Single-Channel Dereverberation in Matlab
https://github.com/csd111/dereverberation
Last synced: 3 months ago
JSON representation
Single-Channel Dereverberation in Matlab
- Host: GitHub
- URL: https://github.com/csd111/dereverberation
- Owner: csd111
- Created: 2017-12-11T14:48:36.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-11-13T06:28:15.000Z (about 6 years ago)
- Last Synced: 2024-08-02T07:13:48.151Z (6 months ago)
- Language: Matlab
- Size: 42 KB
- Stars: 34
- Watchers: 4
- Forks: 21
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-speech-enhancement - [SPENDRED
README
# dereverberation
Single-Channel Dereverberation algorithm in Matlab called SPENDRED (SPeech ENhancement and DeREverberation by Doire)Reference:
C. S. J. Doire, D. M. Brookes, P. A. Naylor, C. M. Hicks, D. Betts, M. A. Dmour, and S. H. Jensen.
Single-channel online enhancement of speech corrupted by reverberation and noise.
IEEE Trans. Audio, Speech, Language Processing, 25 (3): 572-587, Mar. 2017. doi: 10.1109/TASLP.2016.2641904.
Usage :
(1) [enhanced_speech] = spendred(corrupted_speech,fs) % Denoises and dereverberates the input speech file
(2) [enhanced_speech] = spendred(corrupted_speech,fs,algo_params) % performs enhancement using custom parameters in 'algo_params'Inputs:
input_speech Noisy and reverberant input speech signal (single-channel)
fs Sample frequency in Hz
algo_params algorithm parameters [optional]Outputs:
enhanced_speech Enhanced output speech fileAlgorithm Parameters:
The following parameters are defined in 'algo_params'. Default values are shown below.algo_params.of=6 % Overlap factor [6]
algo_params.ti=0.005 % Desired frame increment in seconds [0.005]
algo_params.ri=1 % Set to 1 to round ti to the nearest power of 2 samples [1]
algo_params.sg=1 % Type of gain: 1=Wiener Gain, 2=Power Spectral Subtraction, 3=MMSE speech estimate [1]
algo_params.sc=0.95 % Smoothing constant for computation of the spectral gain [0.95]
algo_params.sf=1e-5; % Floor for the spectral gain [1e-5]
algo_params.os=2; % Interference Over-subtraction factor [2]
algo_params.cl=6; % Number of HMM states to use (minimum is 2 - maximum is 6) [6]
algo_params.ds=1; % Way of computing posterior distributions : 1 = max track , 2 = weighted sum of tracks
algo_params.mo=1; % Mode : 'fast' = 1 or 'slow' = 0 [1]
algo_params.ef=-60; % Energy floor (dB) [-60]