Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/csgillespie/powerlaw

This package implements both the discrete and continuous maximum likelihood estimators for fitting the power-law distribution to data. Additionally, a goodness-of-fit based approach is used to estimate the lower cutoff for the scaling region.
https://github.com/csgillespie/powerlaw

clauset cran powerlaw r

Last synced: 5 days ago
JSON representation

This package implements both the discrete and continuous maximum likelihood estimators for fitting the power-law distribution to data. Additionally, a goodness-of-fit based approach is used to estimate the lower cutoff for the scaling region.

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```

# The poweRlaw package
[![Build Status](https://travis-ci.org/csgillespie/poweRlaw.png?branch=master,dev)](https://travis-ci.org/csgillespie/poweRlaw)
[![codecov.io](https://codecov.io/github/csgillespie/poweRlaw/coverage.svg?branch=master)](https://codecov.io/github/csgillespie/poweRlaw?branch=master)
[![Downloads](http://cranlogs.r-pkg.org/badges/poweRlaw?color=brightgreen)](https://cran.r-project.org/package=poweRlaw)
[![CRAN](http://www.r-pkg.org/badges/version/poweRlaw)](https://cran.r-project.org/package=poweRlaw)

This package implements both the discrete and continuous maximum likelihood estimators for fitting the power-law distribution to data using the methods described in [Clauset et al, 2009](http://arxiv.org/abs/0706.1062). It also provides function to fit log-normal and Poisson distributions. Additionally, a goodness-of-fit based approach is used to estimate the lower cut-off for the scaling region.

The code developed in this package was influenced from the python and R code found at [Aaron Clauset's website](http://tuvalu.santafe.edu/~aaronc/powerlaws/). In particular, the R code of Laurent Dubroca and Cosma Shalizi.

To cite this package in academic work, please use:

Gillespie, C. S. "*Fitting heavy tailed distributions: the poweRlaw package.*" Journal of Statistical Software, 64(2) 2015. ([pdf](https://www.jstatsoft.org/v64/i02/paper)).

For a different way of handling powerlaw type distributions, see

Gillespie, C.S. "
*Estimating the number of casualties in the American Indian war: a Bayesian analysis using the power law distribution.*" Annals of Applied Statistics, 2017. ([pdf](https://arxiv.org/abs/1710.01662))

Installation
------------

This package is hosted on [CRAN](https://cran.r-project.org/package=poweRlaw) and can be installed in the usual way:
```{r, eval =FALSE}
install.packages("poweRlaw")
```
Alternatively, the development version can be install from from github using the devtools package:
```{r, eval = FALSE}
install.packages("devtools")
devtools::install_github("csgillespie/poweRlaw")
```

Getting Started
---------------

To get started, load the package
```{r}
library("poweRlaw")
```
then work through the four vignettes (links to the current CRAN version):

* [Getting started](https://cran.r-project.org/package=poweRlaw/vignettes/a_introduction.pdf)
* [Worked examples](https://cran.r-project.org/package=poweRlaw/vignettes/b_powerlaw_examples.pdf)
* [Comparing distributions](https://cran.r-project.org/package=poweRlaw/vignettes/c_comparing_distributions.pdf)
* [JSS paper](https://cran.r-project.org/package=poweRlaw/vignettes/d_jss_paper.pdf)

Alternatively, you can access the vignettes from within the package:
```{r, eval =FALSE}
browseVignettes("poweRlaw")
```
The plots below show the line of best fit to the Moby Dick and blackout data sets (from Clauset et al, 2009).
![Cumulative CDF of the Moby Dick and blackout data sets with line of best fit.](man/figures/figure1.png)

Other information
-----------------

* If you have any suggestions or find bugs, please use the github [issue tracker](https://github.com/csgillespie/poweRlaw/issues)
* Feel free to submit pull requests

---

Development of this package was supported by [Jumping Rivers](https://www.jumpingrivers.com)