Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/csinva/imodelsX

Scikit-learn friendly library to interpret, and prompt-engineer text datasets using large language models.
https://github.com/csinva/imodelsX

ai deep-learning explainability huggingface interpretability language-model machine-learning ml natural-language-processing natural-language-understanding neural-network pytorch scikit-learn text text-classification transformer-models xai

Last synced: 3 months ago
JSON representation

Scikit-learn friendly library to interpret, and prompt-engineer text datasets using large language models.

Awesome Lists containing this project

README

        


Scikit-learn friendly library to explain, predict, and steer text models/data.
Also a bunch of utilities for getting started with text data.



📖 demo notebooks






**Explainable modeling/steering**

| Model | Reference | Output | Description |
| :-------------------------- | ------------------------------------------------------------ | ------- | ------------------------------------------------------------ |
| Tree-Prompt | [🗂️](http://csinva.io/imodelsX/treeprompt/treeprompt.html), [🔗](https://github.com/csinva/tree-prompt/tree/main), [📄](https://arxiv.org/abs/2310.14034), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/tree_prompt.ipynb), | Explanation
+ Steering | Generates a tree of prompts to
steer an LLM (*Official*) |
| iPrompt | [🗂️](http://csinva.io/imodelsX/iprompt/api.html#imodelsx.iprompt.api.explain_dataset_iprompt), [🔗](https://github.com/csinva/interpretable-autoprompting), [📄](https://arxiv.org/abs/2210.01848), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/iprompt.ipynb) | Explanation
+ Steering | Generates a prompt that
explains patterns in data (*Official*) |
| AutoPrompt | ㅤㅤ[🗂️](), [🔗](https://github.com/ucinlp/autoprompt), [📄](https://arxiv.org/abs/2010.15980) | Explanation
+ Steering | Find a natural-language prompt
using input-gradients|
| D3 | [🗂️](http://csinva.io/imodelsX/d3/d3.html#imodelsx.d3.d3.explain_dataset_d3), [🔗](https://github.com/ruiqi-zhong/DescribeDistributionalDifferences), [📄](https://arxiv.org/abs/2201.12323), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/d3.ipynb) | Explanation | Explain the difference between two distributions |
| SASC | ㅤㅤ[🗂️](https://csinva.io/imodelsX/sasc/api.html), [🔗](https://github.com/microsoft/automated-explanations), [📄](https://arxiv.org/abs/2305.09863) | Explanation | Explain a black-box text module
using an LLM (*Official*) |
| Aug-Linear | [🗂️](https://csinva.io/imodelsX/auglinear/auglinear.html), [🔗](https://github.com/microsoft/aug-models), [📄](https://www.nature.com/articles/s41467-023-43713-1), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/aug_imodels.ipynb) | Linear model | Fit better linear model using an LLM
to extract embeddings (*Official*) |
| Aug-Tree | [🗂️](https://csinva.io/imodelsX/augtree/augtree.html), [🔗](https://github.com/microsoft/aug-models), [📄](https://www.nature.com/articles/s41467-023-43713-1), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/aug_imodels.ipynb) | Decision tree | Fit better decision tree using an LLM
to expand features (*Official*) |
| QAEmb | [🗂️](https://csinva.io/imodelsX/qaemb/qaemb.html), [🔗](https://github.com/csinva/interpretable-embeddings), [📄](https://arxiv.org/abs/2405.16714), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/qaemb.ipynb) | Explainable
embedding | Generate interpretable embeddings
by asking LLMs questions (*Official*) |
| KAN | [🗂️](https://csinva.io/imodelsX/kan/kan_sklearn.html), [🔗](https://github.com/Blealtan/efficient-kan/tree/master), [📄](https://arxiv.org/abs/2404.19756), [📖](https://github.com/csinva/imodelsX/blob/master/demo_notebooks/kan.ipynb) | Small
network | Fit 2-layer Kolmogorov-Arnold network |


📖Demo notebooks   🗂️ Doc   🔗 Reference code   📄 Research paper

⌛ We plan to support other interpretable algorithms like RLPrompt, CBMs, and NBDT. If you want to contribute an algorithm, feel free to open a PR 😄

**General utilities**

| Model | Reference |
| :-------------------------- | ------------------------------------------------------------ |
| [🗂️](https://csinva.io/imodelsX/llm.html) LLM wrapper| Easily call different LLMs |
| [🗂️](https://csinva.io/imodelsX/data.html) Dataset wrapper| Download minimially processed huggingface datasets |
| [🗂️](https://csinva.io/imodelsX/linear_ngram.html) Bag of Ngrams | Learn a linear model of ngrams |
| [🗂️](https://csinva.io/imodelsX/linear_finetune.html) Linear Finetune | Finetune a single linear layer on top of LLM embeddings |

# Quickstart
**Installation**: `pip install imodelsx` (or, for more control, clone and install from source)

**Demos**: see the [demo notebooks](https://github.com/csinva/imodelsX/tree/master/demo_notebooks)

# Natural-language explanations

### Tree-prompt
```python
from imodelsx import TreePromptClassifier
import datasets
import numpy as np
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

# set up data
rng = np.random.default_rng(seed=42)
dset_train = datasets.load_dataset('rotten_tomatoes')['train']
dset_train = dset_train.select(rng.choice(
len(dset_train), size=100, replace=False))
dset_val = datasets.load_dataset('rotten_tomatoes')['validation']
dset_val = dset_val.select(rng.choice(
len(dset_val), size=100, replace=False))

# set up arguments
prompts = [
"This movie is",
" Positive or Negative? The movie was",
" The sentiment of the movie was",
" The plot of the movie was really",
" The acting in the movie was",
]
verbalizer = {0: " Negative.", 1: " Positive."}
checkpoint = "gpt2"

# fit model
m = TreePromptClassifier(
checkpoint=checkpoint,
prompts=prompts,
verbalizer=verbalizer,
cache_prompt_features_dir=None, # 'cache_prompt_features_dir/gp2',
)
m.fit(dset_train["text"], dset_train["label"])

# compute accuracy
preds = m.predict(dset_val['text'])
print('\nTree-Prompt acc (val) ->',
np.mean(preds == dset_val['label'])) # -> 0.7

# compare to accuracy for individual prompts
for i, prompt in enumerate(prompts):
print(i, prompt, '->', m.prompt_accs_[i]) # -> 0.65, 0.5, 0.5, 0.56, 0.51

# visualize decision tree
plot_tree(
m.clf_,
fontsize=10,
feature_names=m.feature_names_,
class_names=list(verbalizer.values()),
filled=True,
)
plt.show()
```

### iPrompt

```python
from imodelsx import explain_dataset_iprompt, get_add_two_numbers_dataset

# get a simple dataset of adding two numbers
input_strings, output_strings = get_add_two_numbers_dataset(num_examples=100)
for i in range(5):
print(repr(input_strings[i]), repr(output_strings[i]))

# explain the relationship between the inputs and outputs
# with a natural-language prompt string
prompts, metadata = explain_dataset_iprompt(
input_strings=input_strings,
output_strings=output_strings,
checkpoint='EleutherAI/gpt-j-6B', # which language model to use
num_learned_tokens=3, # how long of a prompt to learn
n_shots=3, # shots per example
n_epochs=15, # how many epochs to search
verbose=0, # how much to print
llm_float16=True, # whether to load the model in float_16
)
--------
prompts is a list of found natural-language prompt strings
```

### D3 (DescribeDistributionalDifferences)

```python
from imodelsx import explain_dataset_d3
hypotheses, hypothesis_scores = explain_dataset_d3(
pos=positive_samples, # List[str] of positive examples
neg=negative_samples, # another List[str]
num_steps=100,
num_folds=2,
batch_size=64,
)
```

### SASC
Here, we explain a *module* rather than a dataset

```python
from imodelsx import explain_module_sasc
# a toy module that responds to the length of a string
mod = lambda str_list: np.array([len(s) for s in str_list])

# a toy dataset where the longest strings are animals
text_str_list = ["red", "blue", "x", "1", "2", "hippopotamus", "elephant", "rhinoceros"]
explanation_dict = explain_module_sasc(
text_str_list,
mod,
ngrams=1,
)
```

# Aug-imodels
Use these just a like a scikit-learn model. During training, they fit better features via LLMs, but at test-time they are extremely fast and completely transparent.

```python
from imodelsx import AugLinearClassifier, AugTreeClassifier, AugLinearRegressor, AugTreeRegressor
import datasets
import numpy as np

# set up data
dset = datasets.load_dataset('rotten_tomatoes')['train']
dset = dset.select(np.random.choice(len(dset), size=300, replace=False))
dset_val = datasets.load_dataset('rotten_tomatoes')['validation']
dset_val = dset_val.select(np.random.choice(len(dset_val), size=300, replace=False))

# fit model
m = AugLinearClassifier(
checkpoint='textattack/distilbert-base-uncased-rotten-tomatoes',
ngrams=2, # use bigrams
)
m.fit(dset['text'], dset['label'])

# predict
preds = m.predict(dset_val['text'])
print('acc_val', np.mean(preds == dset_val['label']))

# interpret
print('Total ngram coefficients: ', len(m.coefs_dict_))
print('Most positive ngrams')
for k, v in sorted(m.coefs_dict_.items(), key=lambda item: item[1], reverse=True)[:8]:
print('\t', k, round(v, 2))
print('Most negative ngrams')
for k, v in sorted(m.coefs_dict_.items(), key=lambda item: item[1])[:8]:
print('\t', k, round(v, 2))
```

# KAN
```python
import imodelsx
from sklearn.datasets import make_classification, make_regression
from sklearn.metrics import accuracy_score
import numpy as np

X, y = make_classification(n_samples=5000, n_features=5, n_informative=3)
model = imodelsx.KANClassifier(hidden_layer_size=64, device='cpu',
regularize_activation=1.0, regularize_entropy=1.0)
model.fit(X, y)
y_pred = model.predict(X)
print('Test acc', accuracy_score(y, y_pred))

# now try regression
X, y = make_regression(n_samples=5000, n_features=5, n_informative=3)
model = imodelsx.kan.KANRegressor(hidden_layer_size=64, device='cpu',
regularize_activation=1.0, regularize_entropy=1.0)
model.fit(X, y)
y_pred = model.predict(X)
print('Test correlation', np.corrcoef(y, y_pred.flatten())[0, 1])
```

# General utilities

### Easy baselines
Easy-to-fit baselines that follow the sklearn API.

```python
from imodelsx import LinearFinetuneClassifier, LinearNgramClassifier
# fit a simple one-layer finetune on top of LLM embeddings
m = LinearFinetuneClassifier(
checkpoint='distilbert-base-uncased',
)
m.fit(dset['text'], dset['label'])
preds = m.predict(dset_val['text'])
acc = (preds == dset_val['label']).mean()
print('validation acc', acc)
```

### LLM wrapper
Easy API for calling different language models with caching (much more lightweight than [langchain](https://github.com/langchain-ai/langchain)).

```python
import imodelsx.llm
# supports any huggingface checkpoint or openai checkpoint (including chat models)
llm = imodelsx.llm.get_llm(
checkpoint="gpt2-xl", # text-davinci-003, gpt-3.5-turbo, ...
CACHE_DIR=".cache",
)
out = llm("May the Force be")
llm("May the Force be") # when computing the same string again, uses the cache
```

### Data wrapper
API for loading huggingface datasets with basic preprocessing.
```python
import imodelsx.data
dset, dataset_key_text = imodelsx.data.load_huggingface_dataset('ag_news')
# Ensures that dset has a split named 'train' and 'validation',
# and that the input data is contained for each split in a column given by {dataset_key_text}
```

# Related work
- imodels package (JOSS 2021 [github](https://github.com/csinva/imodels)) - interpretable ML package for concise, transparent, and accurate predictive modeling (sklearn-compatible).
- Adaptive wavelet distillation (NeurIPS 2021 [pdf](https://arxiv.org/abs/2107.09145), [github](https://github.com/Yu-Group/adaptive-wavelets)) - distilling a neural network into a concise wavelet model
- Transformation importance (ICLR 2020 workshop [pdf](https://arxiv.org/abs/2003.01926), [github](https://github.com/csinva/transformation-importance)) - using simple reparameterizations, allows for calculating disentangled importances to transformations of the input (e.g. assigning importances to different frequencies)
- Hierarchical interpretations (ICLR 2019 [pdf](https://openreview.net/pdf?id=SkEqro0ctQ), [github](https://github.com/csinva/hierarchical-dnn-interpretations)) - extends CD to CNNs / arbitrary DNNs, and aggregates explanations into a hierarchy
- Interpretation regularization (ICML 2020 [pdf](https://arxiv.org/abs/1909.13584), [github](https://github.com/laura-rieger/deep-explanation-penalization)) - penalizes CD / ACD scores during training to make models generalize better
- PDR interpretability framework (PNAS 2019 [pdf](https://arxiv.org/abs/1901.04592)) - an overarching framewwork for guiding and framing interpretable machine learning