https://github.com/csinva/local-vae
Making locally disentangled vaes.
https://github.com/csinva/local-vae
disentanglement neural-network pytorch vae
Last synced: 2 months ago
JSON representation
Making locally disentangled vaes.
- Host: GitHub
- URL: https://github.com/csinva/local-vae
- Owner: csinva
- License: mit
- Created: 2020-09-11T07:49:14.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-02-12T21:33:07.000Z (over 4 years ago)
- Last Synced: 2025-02-08T13:31:17.890Z (4 months ago)
- Topics: disentanglement, neural-network, pytorch, vae
- Language: Jupyter Notebook
- Homepage: https://csinva.io/local-vae/
- Size: 102 MB
- Stars: 3
- Watchers: 4
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
- License: LICENSE
Awesome Lists containing this project
README
Trying to make locally disentangled VAEs.
*This repo is actively maintained. For any questions please file an issue.*
# related work
- TRIM (ICLR 2020 workshop [pdf](https://arxiv.org/abs/2003.01926), [github](https://github.com/csinva/transformation-importance)) - using simple reparameterizations, allows for calculating disentangled importances to transformations of the input (e.g. assigning importances to different frequencies)
- ACD (ICLR 2019 [pdf](https://openreview.net/pdf?id=SkEqro0ctQ), [github](https://github.com/csinva/hierarchical-dnn-interpretations)) - extends CD to CNNs / arbitrary DNNs, and aggregates explanations into a hierarchy
- CDEP (ICML 2020 [pdf](https://arxiv.org/abs/1909.13584), [github](https://github.com/laura-rieger/deep-explanation-penalization)) - penalizes CD / ACD scores during training to make models generalize better
- DAC (arXiv 2019 [pdf](https://arxiv.org/abs/1905.07631), [github](https://github.com/csinva/disentangled-attribution-curves)) - finds disentangled interpretations for random forests
- PDR framework (PNAS 2019 [pdf](https://arxiv.org/abs/1901.04592)) - an overarching framewwork for guiding and framing interpretable machine learning# reference
- feel free to use/share this code openly
- uses code from [disentangling-vae](https://github.com/YannDubs/disentangling-vae) + [TRIM](https://github.com/csinva/transformation-importance)
- if you find this code useful for your research, please cite the following:```r
```