Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/csoneson/exploremodelmatrix
Explore design matrices interactively with R/Shiny
https://github.com/csoneson/exploremodelmatrix
Last synced: 1 day ago
JSON representation
Explore design matrices interactively with R/Shiny
- Host: GitHub
- URL: https://github.com/csoneson/exploremodelmatrix
- Owner: csoneson
- License: other
- Created: 2019-07-06T19:32:33.000Z (over 5 years ago)
- Default Branch: devel
- Last Pushed: 2024-12-21T16:19:42.000Z (18 days ago)
- Last Synced: 2024-12-30T22:10:03.651Z (8 days ago)
- Language: R
- Homepage: https://csoneson.github.io/ExploreModelMatrix/
- Size: 7.69 MB
- Stars: 36
- Watchers: 7
- Forks: 2
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Changelog: NEWS.md
- License: LICENSE
Awesome Lists containing this project
README
# ExploreModelMatrix
[![Codecov.io coverage status](https://codecov.io/github/csoneson/ExploreModelMatrix/coverage.svg?branch=master)](https://codecov.io/github/csoneson/ExploreModelMatrix)
[![R build status](https://github.com/csoneson/ExploreModelMatrix/workflows/R-CMD-check/badge.svg)](https://github.com/csoneson/ExploreModelMatrix/actions)`ExploreModelMatrix` is a small R package that lets the user interactively
explore a design matrix as generated by the `model.matrix()` R function.
In particular, given a table with sample information
and a design formula, `ExploreModelMatrix` illustrates the fitted values
from a general linear model (or, more generally, the value of the linear
predictor of a generalized linear model) for each combination of
input variables, simplifying understanding and generation of contrasts. A
number of other visualizations are also included in the interactive interface,
particularly simplifying the interpretation of linear models.![](https://github.com/csoneson/ExploreModelMatrix/blob/master/inst/www/ExploreModelMatrix.jpg?raw=true)
## Installation
You can install `ExploreModelMatrix` from Bioconductor (note that you need
at least release 3.11 of Bioconductor, released in April 2020):```
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ExploreModelMatrix")
```## Usage
The main function in the `ExploreModelMatrix` package is called
`ExploreModelMatrix()`. When calling `ExploreModelMatrix()`, simply provide a
_data.frame_ (or _DataFrame_) with sample information and a design formula:```
sampleData <- data.frame(genotype = rep(c("A", "B"), each = 4),
treatment = rep(c("ctrl", "trt"), 4))
ExploreModelMatrix(sampleData = sampleData,
designFormula = ~ genotype + treatment)
```This will open up an [R/Shiny](https://shiny.rstudio.com/) application where you
can explore the specified design matrix and the fitted values for each
combination of predictor values.For more examples of designs, we refer to the package vignette.