Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/csukuangfj/kaldi-native-fbank

Kaldi-compatible online fbank extractor without external dependencies
https://github.com/csukuangfj/kaldi-native-fbank

cpp fbank kaldi-compatible online-fbank python

Last synced: about 15 hours ago
JSON representation

Kaldi-compatible online fbank extractor without external dependencies

Awesome Lists containing this project

README

        

# Introduction

Kaldi-compatible online fbank feature extractor without external dependencies.

Tested on the following architectures and operating systems:

- Linux
- macOS
- Windows
- Android
- x86
- arm
- aarch64

# Usage

See the following CMake-based speech recognition (i.e., text-to-speech) projects
for its usage:

-
- Specifically, please have a look at
-

They use `kaldi-native-fbank` to compute fbank features for **real-time**
speech recognition.

# Python APIs

First, please install `kaldi-native-fbank` by

```bash
git clone https://github.com/csukuangfj/kaldi-native-fbank
cd kaldi-native-fbank
python3 setup.py install
```

or use

```bash
pip install kaldi-native-fbank
```

To check that you have installed `kaldi-native-fbank` successfully, please use

```
python3 -c "import kaldi_native_fbank; print(kaldi_native_fbank.__version__)"
```

which should print the version you have installed.

Please refer to

-
-

for usages.

For easier reference, we post the above file below:

```python3
#!/usr/bin/env python3

import sys

try:
import kaldifeat
except:
print("Please install kaldifeat first")
sys.exit(0)

import kaldi_native_fbank as knf
import torch

def main():
sampling_rate = 16000
samples = torch.randn(16000 * 10)

opts = kaldifeat.FbankOptions()
opts.frame_opts.dither = 0
opts.mel_opts.num_bins = 80
opts.frame_opts.snip_edges = False
opts.mel_opts.debug_mel = False

online_fbank = kaldifeat.OnlineFbank(opts)

online_fbank.accept_waveform(sampling_rate, samples)

opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.mel_opts.num_bins = 80
opts.frame_opts.snip_edges = False
opts.mel_opts.debug_mel = False

fbank = knf.OnlineFbank(opts)
fbank.accept_waveform(sampling_rate, samples.tolist())

assert online_fbank.num_frames_ready == fbank.num_frames_ready
for i in range(fbank.num_frames_ready):
f1 = online_fbank.get_frame(i)
f2 = torch.from_numpy(fbank.get_frame(i))
assert torch.allclose(f1, f2, atol=1e-3), (i, (f1 - f2).abs().max())

if __name__ == "__main__":
torch.manual_seed(20220825)
main()
print("success")
```