Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/csyanbin/TPN
Code for ICLR19 paper: Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning.
https://github.com/csyanbin/TPN
Last synced: 13 days ago
JSON representation
Code for ICLR19 paper: Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning.
- Host: GitHub
- URL: https://github.com/csyanbin/TPN
- Owner: csyanbin
- Created: 2018-12-22T10:26:19.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-04T10:09:19.000Z (over 5 years ago)
- Last Synced: 2024-07-31T23:45:08.141Z (3 months ago)
- Language: Python
- Homepage:
- Size: 3.2 MB
- Stars: 242
- Watchers: 6
- Forks: 43
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-few-shot-meta-learning - code - official (TF)
README
# Transductive Propagation Network
Code for ICLR19 paper:
*Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning.* [pdf](https://openreview.net/pdf?id=SyVuRiC5K7)## Pytorch Version
https://github.com/csyanbin/TPN-pytorch## Requirements
* Python 3.5
* Tensorflow 1.3+
* tqdm## Data Download (miniImagenet and tieredImagenet)
Please download the compressed tar files from: https://github.com/renmengye/few-shot-ssl-public```
mkdir -p data/miniImagenet/data
tar -zxvf mini-imagenet.tar.gz
mv *.pkl data/miniImagenet/datamkdir -p data/tieredImagenet/data
tar -xvf tiered-imagenet.tar
mv *.pkl data/tieredImagenet/data```
## TPN mini-5way1shot
```
python train.py --gpu=0 --n_way=5 --n_shot=1 --n_test_way=5 --n_test_shot=1 --lr=0.001 --step_size=10000 --dataset=mini --exp_name=mini_TPN_5w1s_5tw1ts_rn300_k20 --rn=300 --alpha=0.99 --k=20
``````
python test.py --gpu=0 --n_way=5 --n_shot=1 --n_test_way=5 --n_test_shot=1 --lr=0.001 --step_size=10000 --dataset=mini --exp_name=mini_TPN_5w1s_5tw1ts_rn300_k20 --rn=300 --alpha=0.99 --k=20 --iters=81500
```## TPN mini-5way5shot
```
python train.py --gpu=0 --n_way=5 --n_shot=5 --n_test_way=5 --n_test_shot=5 --lr=0.001 --step_size=10000 --dataset=mini --exp_name=mini_TPN_5w5s_5tw5ts_rn300_k20 --rn=300 --alpha=0.99 --k=20
``````
python test.py --gpu=0 --n_way=5 --n_shot=5 --n_test_way=5 --n_test_shot=5 --lr=0.001 --step_size=10000 --dataset=mini --exp_name=mini_TPN_5w5s_5tw5ts_rn300_k20 --rn=300 --alpha=0.99 --k=20 --iters=50100```
## TPN tiered-5way1shot
```
python train.py --gpu=0 --n_way=5 --n_shot=1 --n_test_way=5 --n_test_shot=1 --lr=0.001 --step_size=25000 --dataset=tiered --exp_name=tiered_TPN_5w1s_5tw1ts_rn300_k20 --rn=300 --alpha=0.99 --k=20
```## TPN tiered-5way5shot
```
python train.py --gpu=0 --n_way=5 --n_shot=5 --n_test_way=5 --n_test_shot=5 --lr=0.001 --step_size=25000 --dataset=tiered --exp_name=tiered_TPN_5w5s_5tw5ts_rn300_k20 --rn=300 --alpha=0.99 --k=20
```## Citation
If you use our code, please consider to cite the following paper:
* Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sungju Hwang, Yi Yang. Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning. In *Proceedings of 7th International Conference on Learning Representations (ICLR)*, 2019.```
@inproceedings{liu2019fewTPN,
title={Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning},
author={Yanbin Liu and
Juho Lee and
Minseop Park and
Saehoon Kim and
Eunho Yang and
Sungju Hwang and
Yi Yang},
booktitle={International Conference on Learning Representations},
year={2019},
}```