An open API service indexing awesome lists of open source software.

https://github.com/cszn/dpsr

Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels (CVPR, 2019) (PyTorch)
https://github.com/cszn/dpsr

blurry-images plug-and-play pytorch-implmention srresnet super-resolution

Last synced: about 2 months ago
JSON representation

Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels (CVPR, 2019) (PyTorch)

Awesome Lists containing this project

README

        

# DPSR

# Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels (CVPR, 2019)

- Related work: [DPIR](https://github.com/cszn/DPIR)

# Training and testing codes for the super-resolver prior ([PyTorch](https://github.com/cszn/KAIR))
- [main_train_dpsr.py](https://github.com/cszn/KAIR/blob/master/main_train_dpsr.py)

- [main_test_dpsr.py](https://github.com/cszn/KAIR/blob/master/main_test_dpsr.py)

***

The left is the blurry LR image. The right is the super-resolved image by DPSRGAN with scale factor 4.

Run [demo_test_dpsr.py](demo_test_dpsr.py) to produce the following results.



***

Super-resolved images of LR image [chip.png](testsets/real_imgs/LR/chip.png) by DPSR with scale factors 2, 3 and 4.

Run [demo_test_dpsr_real.py](demo_test_dpsr_real.py) to produce the following results.

LR

x2

x3

x4

# Requirements and Dependencies
- Spyder (Python 3.6)
- PyTorch 0.4.1
- Windows 10

# Citation
```BibTex
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
```