Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ctuavastlab/mill.jl

Build flexible hierarchical multi-instance learning models.
https://github.com/ctuavastlab/mill.jl

flux hierarchical-data json julia machine-learning multi-instance-learning

Last synced: 5 days ago
JSON representation

Build flexible hierarchical multi-instance learning models.

Awesome Lists containing this project

README

        


Mill.jl logo
Mill.jl logo

---

[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/CTUAvastLab/Mill.jl/blob/master/LICENSE.md)
[![Docs](https://img.shields.io/badge/docs-stable-blue.svg)](https://CTUAvastLab.github.io/Mill.jl/stable)
[![Build Status](https://github.com/CTUAvastLab/Mill.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/CTUAvastLab/Mill.jl/actions/workflows/ci.yml)
[![codecov](https://codecov.io/gh/CTUAvastLab/Mill.jl/graph/badge.svg?token=bIjsTgkv8C)](https://codecov.io/gh/CTUAvastLab/Mill.jl)

`Mill.jl` (Multiple Instance Learning Library) is a library aimed to build flexible hierarchical multi-instance learning models built on top of [`Flux.jl`](https://fluxml.ai). It is developed to be:

* **flexible** and **versatile**
* as **general** as possible
* **fast**
* and dependent on only handful of other packages

[**Watch our introductory talk from JuliaCon 2021** ](https://www.youtube.com/watch?v=Bf0CvltIDbE)

## Installation

Run the following in REPL:

```julia
] add Mill
```

Julia v1.10 or later is required.

## Getting Started

- [Documentation](https://ctuavastlab.github.io/Mill.jl/stable/)
- [API Reference](https://ctuavastlab.github.io/Mill.jl/stable/api/aggregation/)
- [Examples](https://ctuavastlab.github.io/Mill.jl/stable/examples/musk/musk/)

## Citation

Kindly cite our work with the following entries if you find it interesting, please:

* [*JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON
data*](https://jmlr.org/papers/v23/21-0174.html)

```
@article{Mandlik2022,
author = {Šimon Mandlík and Matěj Račinský and Viliam Lisý and Tomáš Pevný},
issn = {1533-7928},
issue = {298},
journal = {Journal of Machine Learning Research},
pages = {1-5},
title = {JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON data},
volume = {23},
url = {http://jmlr.org/papers/v23/21-0174.html},
year = {2022},
}
```

* [*Malicious Internet Entity Detection Using Local Graph
Inference*](https://ieeexplore.ieee.org/document/10418120) (practical `Mill.jl` application)

```
@article{Mandlik2024,
author = {Mandlík, Šimon and Pevný, Tomáš and Šmídl, Václav and Bajer, Lukáš},
journal = {IEEE Transactions on Information Forensics and Security},
title = {Malicious Internet Entity Detection Using Local Graph Inference},
year = {2024},
volume = {19},
pages = {3554-3566},
doi = {10.1109/TIFS.2024.3360867}
}
```

* this implementation (fill in the used `version`)

```
@software{Mill,
author = {Tomas Pevny and Simon Mandlik},
title = {Mill.jl framework: a flexible library for (hierarchical) multi-instance learning},
url = {https://github.com/CTUAvastLab/Mill.jl},
version = {...},
}
```

## Contribution guidelines

If you want to contribute to Mill.jl, be sure to review the
[contribution guidelines](CONTRIBUTING.md).

We use [GitHub issues](https://github.com/CTUAvastLab/Mill.jl/issues) for
tracking requests and bugs.

Icon source