Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cuebook/CueObserve
Timeseries Anomaly detection and Root Cause Analysis on data in SQL data warehouses and databases
https://github.com/cuebook/CueObserve
anomaly anomaly-detection bigquery datawarehouse prophet-facebook redshift root-cause-analysis snowflake sql timeseries-analysis timeseries-forecasting
Last synced: about 2 months ago
JSON representation
Timeseries Anomaly detection and Root Cause Analysis on data in SQL data warehouses and databases
- Host: GitHub
- URL: https://github.com/cuebook/CueObserve
- Owner: cuebook
- License: apache-2.0
- Created: 2021-06-22T18:26:27.000Z (over 3 years ago)
- Default Branch: latest_release
- Last Pushed: 2022-02-23T19:51:23.000Z (almost 3 years ago)
- Last Synced: 2024-11-14T03:11:59.661Z (about 2 months ago)
- Topics: anomaly, anomaly-detection, bigquery, datawarehouse, prophet-facebook, redshift, root-cause-analysis, snowflake, sql, timeseries-analysis, timeseries-forecasting
- Language: Python
- Homepage: https://cueobserve.cuebook.ai
- Size: 6.15 MB
- Stars: 225
- Watchers: 15
- Forks: 23
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-TS-anomaly-detection - CueObserve - 2.0 | :heavy_check_mark: (Anomaly Detection Software)
README
# Overview
[![CueObserve Logo](.gitbook/assets/cueObserve.png)](https://cueobserve.cuebook.ai)
[![](https://api.codeclimate.com/v1/badges/a70e071b59d5dbc38846/maintainability)](https://codeclimate.com/github/cuebook/CueObserve/maintainability) [![](https://api.codeclimate.com/v1/badges/a70e071b59d5dbc38846/test\_coverage)](https://codeclimate.com/github/cuebook/CueObserve/test\_coverage) [![Test Coverage](https://github.com/cuebook/cueobserve/actions/workflows/pr\_checks.yml/badge.svg) ](https://github.com/cuebook/cueobserve/actions/workflows/pr\_checks.yml)[![License](https://img.shields.io/github/license/cuebook/cueobserve)](https://github.com/cuebook/cueobserve/blob/main/LICENSE.md)
CueObserve helps you monitor your metrics. Know when, where, and why a metric isn't right.
CueObserve uses **timeseries Anomaly detection** to find **where** and **when** a metric isn't right. It then offers **one-click Root Cause analysis** so that you know **why** a metric isn't right.
CueObserve works with data in your SQL data warehouses and databases. It currently supports Snowflake, BigQuery, Redshift, Druid, Postgres, MySQL, SQL Server and ClickHouse.
![CueObserve Anomaly](<.gitbook/assets/Overview\_Anomaly (1).png>) ![CueObserve RCA](<.gitbook/assets/Overview\_RCA (1).png>)
### Getting Started
Install via docker-compose
```
mkdir -p ~/cuebook
wget https://raw.githubusercontent.com/cuebook/CueObserve/latest_release/docker-compose-prod.yml -q -O ~/cuebook/docker-compose-prod.yml
wget https://raw.githubusercontent.com/cuebook/CueObserve/latest_release/.env -q -O ~/cuebook/.env
cd ~/cuebook
``````
docker-compose -f docker-compose-prod.yml --env-file .env up -d
```Now visit [localhost:3000](http://localhost:3000) in your browser.
### Demo Video
[![Watch CueObserve video](http://img.youtube.com/vi/VZvgNa65GQU/hqdefault.jpg)](http://www.youtube.com/watch?feature=player\_embedded\&v=VZvgNa65GQU)
### How it works
You write a SQL GROUP BY query, map its columns as dimensions and measures, and save it as a virtual Dataset.
![Dataset SQL](<.gitbook/assets/Dataset\_SQL\_cropped (1).png>)
![Dataset Schema Map](<.gitbook/assets/Dataset\_Mapping\_cropped (1).png>)
You then define one or more anomaly detection jobs on the dataset.
![Anomaly Definition](<.gitbook/assets/AnomalyDefinitions (1).png>)
When an anomaly detection job runs, CueObserve does the following:
1. Executes the SQL GROUP BY query on your data warehouse and stores the result as a Pandas dataframe.
2. Generates one or more timeseries from the dataframe, as defined in your anomaly detection job.
3. Generates a forecast for each timeseries using [Prophet](https://github.com/facebook/prophet).
4. Creates a visual card for each timeseries. Marks the card as an anomaly if the last data point is anomalous.### Features
* Automated SQL to timeseries transformation.
* Run anomaly detection on the aggregate metric or split it by any dimension. Limit the split to significant dimension values.
* Use Prophet or simple mathematical rules to detect anomalies.
* In-built Scheduler. CueObserve uses Celery as the executor and celery-beat as the scheduler.
* Slack alerts when anomalies are detected.
* Monitoring. Slack alert when a job fails. CueObserve maintains detailed logs.#### Limitations
* Currently supports Prophet for timeseries forecasting.
* Not being built for real-time anomaly detection on streaming data.### Support
For general help using CueObserve, read the [documentation](https://cueobserve.cuebook.ai), or go to [Github Discussions](https://github.com/cuebook/cueobserve/discussions).
To report a bug or request a feature, open an [issue](https://github.com/cuebook/cueobserve/issues).
### Contributing
We'd love contributions to CueObserve. Before you contribute, please first discuss the change you wish to make via an [issue](https://github.com/cuebook/cueobserve/issues) or a [discussion](https://github.com/cuebook/cueobserve/discussions). Contributors are expected to adhere to our [code of conduct](https://github.com/cuebook/cueobserve/blob/main/CODE\_OF\_CONDUCT.md).