Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cuebook/CueObserve

Timeseries Anomaly detection and Root Cause Analysis on data in SQL data warehouses and databases
https://github.com/cuebook/CueObserve

anomaly anomaly-detection bigquery datawarehouse prophet-facebook redshift root-cause-analysis snowflake sql timeseries-analysis timeseries-forecasting

Last synced: about 2 months ago
JSON representation

Timeseries Anomaly detection and Root Cause Analysis on data in SQL data warehouses and databases

Awesome Lists containing this project

README

        

# Overview

[![CueObserve Logo](.gitbook/assets/cueObserve.png)](https://cueobserve.cuebook.ai)

[![](https://api.codeclimate.com/v1/badges/a70e071b59d5dbc38846/maintainability)](https://codeclimate.com/github/cuebook/CueObserve/maintainability) [![](https://api.codeclimate.com/v1/badges/a70e071b59d5dbc38846/test\_coverage)](https://codeclimate.com/github/cuebook/CueObserve/test\_coverage) [![Test Coverage](https://github.com/cuebook/cueobserve/actions/workflows/pr\_checks.yml/badge.svg) ](https://github.com/cuebook/cueobserve/actions/workflows/pr\_checks.yml)[![License](https://img.shields.io/github/license/cuebook/cueobserve)](https://github.com/cuebook/cueobserve/blob/main/LICENSE.md)

CueObserve helps you monitor your metrics. Know when, where, and why a metric isn't right.

CueObserve uses **timeseries Anomaly detection** to find **where** and **when** a metric isn't right. It then offers **one-click Root Cause analysis** so that you know **why** a metric isn't right.

CueObserve works with data in your SQL data warehouses and databases. It currently supports Snowflake, BigQuery, Redshift, Druid, Postgres, MySQL, SQL Server and ClickHouse.

![CueObserve Anomaly](<.gitbook/assets/Overview\_Anomaly (1).png>) ![CueObserve RCA](<.gitbook/assets/Overview\_RCA (1).png>)

### Getting Started

Install via docker-compose

```
mkdir -p ~/cuebook
wget https://raw.githubusercontent.com/cuebook/CueObserve/latest_release/docker-compose-prod.yml -q -O ~/cuebook/docker-compose-prod.yml
wget https://raw.githubusercontent.com/cuebook/CueObserve/latest_release/.env -q -O ~/cuebook/.env
cd ~/cuebook
```

```
docker-compose -f docker-compose-prod.yml --env-file .env up -d
```

Now visit [localhost:3000](http://localhost:3000) in your browser.

### Demo Video

[![Watch CueObserve video](http://img.youtube.com/vi/VZvgNa65GQU/hqdefault.jpg)](http://www.youtube.com/watch?feature=player\_embedded\&v=VZvgNa65GQU)

### How it works

You write a SQL GROUP BY query, map its columns as dimensions and measures, and save it as a virtual Dataset.

![Dataset SQL](<.gitbook/assets/Dataset\_SQL\_cropped (1).png>)

![Dataset Schema Map](<.gitbook/assets/Dataset\_Mapping\_cropped (1).png>)

You then define one or more anomaly detection jobs on the dataset.

![Anomaly Definition](<.gitbook/assets/AnomalyDefinitions (1).png>)

When an anomaly detection job runs, CueObserve does the following:

1. Executes the SQL GROUP BY query on your data warehouse and stores the result as a Pandas dataframe.
2. Generates one or more timeseries from the dataframe, as defined in your anomaly detection job.
3. Generates a forecast for each timeseries using [Prophet](https://github.com/facebook/prophet).
4. Creates a visual card for each timeseries. Marks the card as an anomaly if the last data point is anomalous.

### Features

* Automated SQL to timeseries transformation.
* Run anomaly detection on the aggregate metric or split it by any dimension. Limit the split to significant dimension values.
* Use Prophet or simple mathematical rules to detect anomalies.
* In-built Scheduler. CueObserve uses Celery as the executor and celery-beat as the scheduler.
* Slack alerts when anomalies are detected.
* Monitoring. Slack alert when a job fails. CueObserve maintains detailed logs.

#### Limitations

* Currently supports Prophet for timeseries forecasting.
* Not being built for real-time anomaly detection on streaming data.

### Support

For general help using CueObserve, read the [documentation](https://cueobserve.cuebook.ai), or go to [Github Discussions](https://github.com/cuebook/cueobserve/discussions).

To report a bug or request a feature, open an [issue](https://github.com/cuebook/cueobserve/issues).

### Contributing

We'd love contributions to CueObserve. Before you contribute, please first discuss the change you wish to make via an [issue](https://github.com/cuebook/cueobserve/issues) or a [discussion](https://github.com/cuebook/cueobserve/discussions). Contributors are expected to adhere to our [code of conduct](https://github.com/cuebook/cueobserve/blob/main/CODE\_OF\_CONDUCT.md).