https://github.com/cuge1995/cvpr-2020-point-cloud-analysis
CVPR 2020 papers focusing on point cloud analysis
https://github.com/cuge1995/cvpr-2020-point-cloud-analysis
computer-vision cvpr cvpr2020 deep-learning point-cloud
Last synced: about 2 months ago
JSON representation
CVPR 2020 papers focusing on point cloud analysis
- Host: GitHub
- URL: https://github.com/cuge1995/cvpr-2020-point-cloud-analysis
- Owner: cuge1995
- Created: 2020-06-11T08:35:51.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2021-01-13T12:35:16.000Z (over 4 years ago)
- Last Synced: 2025-01-12T22:33:01.536Z (3 months ago)
- Topics: computer-vision, cvpr, cvpr2020, deep-learning, point-cloud
- Homepage:
- Size: 126 KB
- Stars: 47
- Watchers: 4
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# CVPR-2020-point-cloud-analysis
CVPR 2020 papers focusing on point cloud analysis- [D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features](https://arxiv.org/abs/2003.03164)
- [[Code](https://github.com/XuyangBai/D3Feat)]- [RPM-Net: Robust Point Matching using Learned Features](https://arxiv.org/abs/2003.13479)
- [[Code](https://github.com/yewzijian/RPMNet)]- [D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry](https://arxiv.org/abs/2003.01060)
- [Cascaded Refinement Network for Point Cloud Completion](https://arxiv.org/abs/2004.03327)
- [[Code](https://github.com/xiaogangw/cascaded-point-completion)]
- [PointAugment: an Auto-Augmentation Framework for Point Cloud Classification](https://arxiv.org/abs/2002.10876)
- [[Code](https://github.com/liruihui/PointAugment/)]- [Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Weakly_Supervised_Semantic_Point_Cloud_Segmentation_Towards_10x_Fewer_Labels_CVPR_2020_paper.pdf) ` segmention `
- [[Code](https://github.com/alex-xun-xu/WeakSupPointCloudSeg)]- [Neural Implicit Embedding for Point Cloud Analysis.](https://openaccess.thecvf.com/content_CVPR_2020/papers/Fujiwara_Neural_Implicit_Embedding_for_Point_Cloud_Analysis_CVPR_2020_paper.pdf) ` segmention ` ` classification `
- [[Code](https://github.com/kentfuji/NeuralEmbedding)]- [OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression.](https://arxiv.org/abs/2005.07178) ` compression ` ` oral `
- [PF-Net: Point Fractal Network for 3D Point Cloud Completion](https://arxiv.org/abs/2003.00410) ` completion `
- [[Code](https://github.com/zztianzz/PF-Net-Point-Fractal-Network)]- [End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection](https://arxiv.org/abs/2004.03080)
- [[Code](https://github.com/mileyan/pseudo-LiDAR_e2e/tree/master/PIXOR)]- [Going Deeper with Point Networks](http://geometry.cs.ucl.ac.uk/projects/2020/deepleanpn/paper_docs/GoingDeeperWithPointNetworksLeKokkinosMitra.pdf) ` segmentation `
- [[Code](https://github.com/erictuanle/GoingDeeperwPointNetworks)]- [Learning multiview 3D point cloud registration](https://arxiv.org/abs/2001.05119)
- [Geometry and Learning Co-supported Normal Estimation for UnstructuredPoint Cloud.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Geometry_and_Learning_Co-Supported_Normal_Estimation_for_Unstructured_Point_Cloud_CVPR_2020_paper.pdf) ` normal estimation `
- [LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of
Point Cloud-based Deep Networks.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_LG-GAN_Label_Guided_Adversarial_Network_for_Flexible_Targeted_Attack_of_CVPR_2020_paper.pdf) ` attack `
- [[Code](https://github.com/RyanHangZhou/LG-GAN)]- [On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhao_On_Isometry_Robustness_of_Deep_3D_Point_Cloud_Models_Under_CVPR_2020_paper.pdf) ` attack `
- [[Code](https://github.com/skywalker6174/3d-isometry-robust)]- [Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_Convolution_in_the_Cloud_Learning_Deformable_Kernels_in_3D_Graph_CVPR_2020_paper.pdf) ` classification ` ` segmentation `
- [[Code](https://github.com/j1a0m0e4sNTU/3dgcn)]- [An Efficient PointLSTM for Point Clouds Based Gesture Recognition.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Min_An_Efficient_PointLSTM_for_Point_Clouds_Based_Gesture_Recognition_CVPR_2020_paper.pdf) ` Gesture Recognition `
- [[Code](https://github.com/Blueprintf/pointlstm-gesture-recognition-pytorch)]- [Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image](https://arxiv.org/abs/2002.12212)
- [In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks](https://arxiv.org/pdf/1911.11924.pdf)- [Unsupervised Learning of Intrinsic Structural Representation Points](https://arxiv.org/pdf/2003.01661.pdf)
- [[Code](https://github.com/NolenChen/3DStructurePoints)]- [LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention](https://arxiv.org/pdf/2004.01389.pdf)
- [[Code](https://github.com/yinjunbo/3DVID)]- [RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds](https://arxiv.org/abs/1911.11236) ` segmentation `
- [[Code](https://github.com/QingyongHu/RandLA-Net)]
- [C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds](https://arxiv.org/abs/1912.07009)- [High-dimensional Convolutional Networks for Geometric Pattern Recognition.](https://arxiv.org/abs/2005.08144) ` registrition ` ` oral `
- [[Code](https://github.com/chrischoy/HighDimConvNets)]- [Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs](https://arxiv.org/abs/2003.00287)
- [PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation](https://arxiv.org/pdf/2004.01658.pdf)
- [[Code](https://github.com/Jia-Research-Lab/PointGroup)]
- [Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion](https://arxiv.org/abs/2003.01456)
- [[Code](https://github.com/RaminHasibi/SA_Net)]- [Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences](http://openaccess.thecvf.com/content_CVPR_2020/papers/Huang_Feature-Metric_Registration_A_Fast_Semi-Supervised_Approach_for_Robust_Point_Cloud_CVPR_2020_paper.pdf)
- [[Code](https://github.com/XiaoshuiHuang/fmr)]
- [From Image Collections to Point Clouds with Self-supervised Shape and Pose Networks](http://openaccess.thecvf.com/content_CVPR_2020/papers/Navaneet_From_Image_Collections_to_Point_Clouds_With_Self-Supervised_Shape_and_CVPR_2020_paper.pdf)
- [[Code](https://github.com/klnavaneet/ssl_3d_recon)]- [Associate-3Ddet: Perceptual-to-Conceptual association for 3D Point Cloud Object Detection](http://openaccess.thecvf.com/content_CVPR_2020/papers/Du_Associate-3Ddet_Perceptual-to-Conceptual_Association_for_3D_Point_Cloud_Object_Detection_CVPR_2020_paper.pdf) ` detection `
- [[Code](https://github.com/dleam/Associate-3Ddet)]
- [Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud](https://arxiv.org/pdf/2003.01251.pdf) ` detection `
- [[Code](https://github.com/WeijingShi/Point-GNN)]- [PointGMM: a Neural GMM Network for Point Clouds](https://arxiv.org/pdf/2003.13326.pdf)
- [[Code](https://github.com/amirhertz/pointgmm)]- [3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation](https://arxiv.org/pdf/2003.13867.pdf)
- [[Code](https://github.com/francisengelmann/3D-MPA)]- [PointPainting: Sequential Fusion for 3D Object Detection](https://arxiv.org/abs/1911.10150) ` detection `
- [[Code](https://github.com/rshilliday/painting)]- [Point Cloud Completion by Skip-attention Network with Hierarchical Folding](http://openaccess.thecvf.com/content_CVPR_2020/papers/Wen_Point_Cloud_Completion_by_Skip-Attention_Network_With_Hierarchical_Folding_CVPR_2020_paper.pdf) ` completion `
- [PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling.](https://arxiv.org/pdf/2003.00492.pdf) ` classification ` ` segmentation `
- [[Code](https://github.com/yanx27/PointASNL)]- [PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation.](https://arxiv.org/pdf/2003.14032.pdf) ` segmentation `
- [[Code](https://github.com/edwardzhou130/PolarSeg)]- [Grid-GCN for Fast and Scalable Point Cloud Learning.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Grid-GCN_for_Fast_and_Scalable_Point_Cloud_Learning_CVPR_2020_paper.pdf) ` learning `
- [[Code](https://github.com/Xharlie/Grid-GCN)]- [End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_End-to-End_Learning_Local_Multi-View_Descriptors_for_3D_Point_Clouds_CVPR_2020_paper.pdf) ` Registration `
- [[Code](https://github.com/craigleili/3DLocalMultiViewDesc)]- [On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhao_On_Isometry_Robustness_of_Deep_3D_Point_Cloud_Models_Under_CVPR_2020_paper.pdf) ` attack `
- [[Code](https://github.com/skywalker6174/3d-isometry-robust)]- [SampleNet: Differentiable Point Cloud Sampling.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Lang_SampleNet_Differentiable_Point_Cloud_Sampling_CVPR_2020_paper.pdf) ` sampling `
- [[Code](https://github.com/itailang/SampleNet)]- [SegGCN: Efficient 3D Point Cloud Segmentation With Fuzzy Spherical Kernel.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Lei_SegGCN_Efficient_3D_Point_Cloud_Segmentation_With_Fuzzy_Spherical_Kernel_CVPR_2020_paper.pdf) ` segmentation `
- [[Code](https://github.com/hlei-ziyan/SegGCN)]- [ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes.](https://arxiv.org/abs/2001.10692) `Detection `
- [[Code](https://github.com/facebookresearch/imvotenet)]- [P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds.](https://arxiv.org/abs/2005.13888) ` Tracking ` `Oral`
- [[Code](https://github.com/HaozheQi/P2B)]