https://github.com/cursedseraphim/nam-torch
A simple implementation of the Neural Additive Model by Agarwal et al. in PyTorch.
https://github.com/cursedseraphim/nam-torch
explainable-ai interpretable-ai interpretable-machine-learning iris-dataset machine-learning xai
Last synced: 4 months ago
JSON representation
A simple implementation of the Neural Additive Model by Agarwal et al. in PyTorch.
- Host: GitHub
- URL: https://github.com/cursedseraphim/nam-torch
- Owner: CursedSeraphim
- Created: 2022-09-30T11:03:56.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2023-04-10T16:37:16.000Z (almost 3 years ago)
- Last Synced: 2023-07-29T14:48:00.819Z (over 2 years ago)
- Topics: explainable-ai, interpretable-ai, interpretable-machine-learning, iris-dataset, machine-learning, xai
- Language: Jupyter Notebook
- Homepage:
- Size: 846 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Neural Additive Models for PyTorch
An implementation of a simple [Neural Additive Model](https://neural-additive-models.github.io/). ([Agarwal et al. 2020](https://arxiv.org/abs/2004.13912)) in PyTorch. It is applied to the Iris dataset for classification and feature map visualization.

# TODOs
* Implement the ExU
* Implement Binary Classification model structure
* Implement Regression model structure
* Implement a more general framework / classes / functions that perform the feature map visualization on arbitrary datasets