Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cvangysel/pytrec_eval

pytrec_eval is an Information Retrieval evaluation tool for Python, based on the popular trec_eval.
https://github.com/cvangysel/pytrec_eval

evaluation information-retrieval

Last synced: 2 days ago
JSON representation

pytrec_eval is an Information Retrieval evaluation tool for Python, based on the popular trec_eval.

Awesome Lists containing this project

README

        

pytrec_eval
===========

pytrec\_eval is a Python interface to TREC's evaluation tool, [trec\_eval](https://github.com/usnistgov/trec_eval). It is an attempt to stop the cultivation of custom implementations of Information Retrieval evaluation measures for the Python programming language.

Requirements
------------

The module was developed using Python 3.5. You need a Python distribution that comes with development headers. In addition to the default Python modules, [numpy](http://www.numpy.org) and [scipy](https://www.scipy.org) are required.

Installation
------------

Installation is simple and should be relatively painless if your Python environment is functioning correctly (see below for FAQs).

pip install pytrec_eval

Examples
--------

Check out the examples that simulate the standard [trec\_eval front-end](examples/trec_eval.py) and that compute [statistical significance](examples/statistical_significance.py) between two runs.

To get a grasp of how simple the module is to use, check this out:

import pytrec_eval
import json

qrel = {
'q1': {
'd1': 0,
'd2': 1,
'd3': 0,
},
'q2': {
'd2': 1,
'd3': 1,
},
}

run = {
'q1': {
'd1': 1.0,
'd2': 0.0,
'd3': 1.5,
},
'q2': {
'd1': 1.5,
'd2': 0.2,
'd3': 0.5,
}
}

evaluator = pytrec_eval.RelevanceEvaluator(
qrel, {'map', 'ndcg'})

print(json.dumps(evaluator.evaluate(run), indent=1))

The above snippet will return a data structure that contains the requested evaluation measures for queries `q1` and `q2`:

{
'q1': {
'ndcg': 0.5,
'map': 0.3333333333333333
},
'q2': {
'ndcg': 0.6934264036172708,
'map': 0.5833333333333333
}
}

For more like this, see the example that uses [parametrized evaluation measures](examples/simple_cut.py).

Frequently Asked Questions
--------------------------

Since the module's initial release, no questions have been asked so frequently that they deserve a spot in this section.

Citation
--------

If you use pytrec\_eval to produce results for your scientific publication, please refer to our SIGIR paper:

```
@inproceedings{VanGysel2018pytreceval,
title={Pytrec\_eval: An Extremely Fast Python Interface to trec\_eval},
author={Van Gysel, Christophe and de Rijke, Maarten},
publisher={ACM},
booktitle={SIGIR},
year={2018},
}
```

License
-------

pytrec\_eval is licensed under the [MIT license](LICENSE). Please note that [trec\_eval](https://github.com/usnistgov/trec_eval) is licensed separately. If you modify pytrec\_eval in any way, please link back to this repository.