Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cvhub520/x-anylabeling

Effortless data labeling with AI support from Segment Anything and other awesome models.
https://github.com/cvhub520/x-anylabeling

clip deep-learning deeplearning labeling-tool llm onnx paddle pytorch resnet sam yolo

Last synced: 7 days ago
JSON representation

Effortless data labeling with AI support from Segment Anything and other awesome models.

Awesome Lists containing this project

README

        




X-AnyLabeling

[English](README.md) | [็ฎ€ไฝ“ไธญๆ–‡](README_zh-CN.md)







![](https://user-images.githubusercontent.com/18329471/234640541-a6a65fbc-d7a5-4ec3-9b65-55305b01a7aa.png)


Segment Anything 2.1


[![Open Vision](https://github.com/user-attachments/assets/b2c1419b-540b-44fb-988e-a48572268df7)](https://www.youtube.com/watch?v=QtoVMiTwXqk)

Interactive Visual-Text Prompting for Generic Vision Tasks

| **Tracking by HBB Detection** | **Tracking by OBB Detection** |
| :---: | :---: |
| | |
| **Tracking by Instance Segmentation** | **Tracking by Pose Estimation** |
| | |

## ๐Ÿฅณ What's New

- Jan. 2025:
- ๐Ÿš€๐Ÿš€๐Ÿš€ Release version [2.5.3](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.5.3).
- Dec. 2024:
- ๐ŸŠ๐ŸŠ๐ŸŠ Added support for [Hyper-YOLO](https://github.com/iMoonLab/Hyper-YOLO) model.
- ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰ Release version [2.5.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.5.0).
- ๐Ÿคก๐Ÿคก๐Ÿคก Added support for [Open Vision](./examples/detection/hbb/README.md) model. [[Youtube](https://www.youtube.com/watch?v=QtoVMiTwXqk) | [Bilibili](https://www.bilibili.com/video/BV1jyqrYyE74)]
- ๐Ÿ‘ป๐Ÿ‘ป๐Ÿ‘ป Added support for [Segment Anything 2.1](./docs/en/model_zoo.md) model.
- ๐Ÿค—๐Ÿค—๐Ÿค— Added support for [Florence-2](./examples/vision_language/florence2/README.md), a unified vision foundation model for multi-modal tasks.
- Nov. 2024:
- โœจโœจโœจ Added support for the [UPN](./examples/detection/hbb/README.md) model to generate proposal boxes.
- ๐ŸŒŸ๐ŸŒŸ๐ŸŒŸ Added support for [YOLOv5-SAHI](./anylabeling/configs/auto_labeling/yolov5s_sahi.yaml).
- Oct. 2024:
- ๐ŸŽฏ๐ŸŽฏ๐ŸŽฏ Added support for [DocLayout-YOLO](examples/optical_character_recognition/document_layout_analysis/README.md) model.
- Sep. 2024:
- Release version [2.4.4](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.4.4)
- ๐Ÿปโ€โ„๏ธ๐Ÿปโ€โ„๏ธ๐Ÿปโ€โ„๏ธ Added support for [YOLO11-Det/OBB/Pose/Seg/Track model](https://github.com/ultralytics/ultralytics).
- ๐Ÿงธ๐Ÿงธ๐Ÿงธ Added support for image matting based on [RMBG v1.4 model](https://huggingface.co/briaai/RMBG-1.4).
- ๐Ÿฆ„๐Ÿฆ„๐Ÿฆ„ Added support for interactive video object tracking based on [Segment-Anything-2](https://github.com/CVHub520/segment-anything-2). [[Tutorial](examples/interactive_video_object_segmentation/README.md)]



Click to view more news.

- Aug. 2024:
- Release version [2.4.1](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.4.1)
- Support [tracking-by-det/obb/seg/pose](./examples/multiple_object_tracking/README.md) tasks.
- Support [Segment-Anything-2](https://github.com/facebookresearch/segment-anything-2) model!
- Support [Grounding-SAM2](./docs/en/model_zoo.md) model.
- Support lightweight model for Japanese recognition.
- Jul. 2024:
- Add PPOCR-Recognition and KIE import/export functionality for training PP-OCR task.
- Add ODVG import/export functionality for training grounding task.
- Add support to annotate KIE linking field.
- Support [RT-DETRv2](https://github.com/lyuwenyu/RT-DETR) model.
- Support [Depth Anything v2](https://github.com/DepthAnything/Depth-Anything-V2) model.
- Jun. 2024:
- Support [YOLOv8-Pose](https://docs.ultralytics.com/tasks/pose/) model.
- Add [yolo-pose](./docs/en/user_guide.md) import/export functionality.
- May. 2024:
- Support [YOLOv8-World](https://docs.ultralytics.com/models/yolo-world), [YOLOv8-oiv7](https://docs.ultralytics.com/models/yolov8), [YOLOv10](https://github.com/THU-MIG/yolov10) model.
- Release version [2.3.6](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.6).
- Add feature to display confidence score.
- Mar. 2024:
- Release version [2.3.5](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.5).
- Feb. 2024:
- Release version [2.3.4](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.4).
- Enable label display feature.
- Release version [2.3.3](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.3).
- Release version [2.3.2](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.2).
- Support [YOLOv9](https://github.com/WongKinYiu/yolov9) model.
- Support the conversion from a horizontal bounding box to a rotated bounding box.
- Supports label deletion and renaming. For more details, please refer to the [document](./docs/zh_cn/user_guide.md).
- Support for quick tag correction is available; please refer to this [document](./docs/en/user_guide.md) for guidance.
- Release version [2.3.1](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.1).
- Jan. 2024:
- Combining CLIP and SAM models for enhanced semantic and spatial understanding. An example can be found [here](./anylabeling/configs/auto_labeling/edge_sam_with_chinese_clip.yaml).
- Add support for the [Depth Anything](https://github.com/LiheYoung/Depth-Anything.git) model in the depth estimation task.
- Release version [2.3.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.0).
- Support [YOLOv8-OBB](https://github.com/ultralytics/ultralytics) model.
- Support [RTMDet](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet) and [RTMO](https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose) model.
- Release a [chinese license plate](https://github.com/we0091234/Chinese_license_plate_detection_recognition) detection and recognition model based on YOLOv5.
- Dec. 2023:
- Release version [2.2.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.2.0).
- Support [EdgeSAM](https://github.com/chongzhou96/EdgeSAM) to optimize for efficient execution on edge devices with minimal performance compromise.
- Support YOLOv5-Cls and YOLOv8-Cls model.
- Nov. 2023:
- Release version [2.1.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.1.0).
- Support [InternImage](https://arxiv.org/abs/2211.05778) model (**CVPR'23**).
- Release version [2.0.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.0.0).
- Added support for Grounding-SAM, combining [GroundingDINO](https://github.com/wenyi5608/GroundingDINO) with [HQ-SAM](https://github.com/SysCV/sam-hq) to achieve sota zero-shot high-quality predictions!
- Enhanced support for [HQ-SAM](https://github.com/SysCV/sam-hq) model to achieve high-quality mask predictions.
- Support the [PersonAttribute](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.5/docs/en/PULC/PULC_person_attribute_en.md) and [VehicleAttribute](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.5/docs/en/PULC/PULC_vehicle_attribute_en.md) model for multi-label classification task.
- Introducing a new multi-label attribute annotation functionality.
- Release version [1.1.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v1.1.0).
- Support pose estimation: [YOLOv8-Pose](https://github.com/ultralytics/ultralytics).
- Support object-level tag with yolov5_ram.
- Add a new feature enabling batch labeling for arbitrary unknown categories based on Grounding-DINO.
- Oct. 2023:
- Release version [1.0.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v1.0.0).
- Add a new feature for rotation box.
- Support [YOLOv5-OBB](https://github.com/hukaixuan19970627/yolov5_obb) with [DroneVehicle](https://github.com/VisDrone/DroneVehicle) and [DOTA](https://captain-whu.github.io/DOTA/index.html)-v1.0/v1.5/v2.0 model.
- SOTA Zero-Shot Object Detection - [GroundingDINO](https://github.com/wenyi5608/GroundingDINO) is released.
- SOTA Image Tagging Model - [Recognize Anything](https://github.com/xinyu1205/Tag2Text) is released.
- Support YOLOv5-SAM and YOLOv8-EfficientViT_SAM union task.
- Support YOLOv5 and YOLOv8 segmentation task.
- Release [Gold-YOLO](https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO) and [DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO) models.
- Release MOT algorithms: [OC_Sort](https://github.com/noahcao/OC_SORT) (**CVPR'23**).
- Add a new feature for small object detection using [SAHI](https://github.com/obss/sahi).
- Sep. 2023:
- Release version [0.2.4](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v0.2.4).
- Release [EfficientViT-SAM](https://github.com/mit-han-lab/efficientvit) (**ICCV'23**),[SAM-Med2D](https://github.com/OpenGVLab/SAM-Med2D), [MedSAM](https://arxiv.org/abs/2304.12306) and YOLOv5-SAM.
- Support [ByteTrack](https://github.com/ifzhang/ByteTrack) (**ECCV'22**) for MOT task.
- Support [PP-OCRv4](https://github.com/PaddlePaddle/PaddleOCR) model.
- Add `video` annotation feature.
- Add `yolo`/`coco`/`voc`/`mot`/`dota` export functionality.
- Add the ability to process all images at once.
- Aug. 2023:
- Release version [0.2.0]((https://github.com/CVHub520/X-AnyLabeling/releases/tag/v0.2.0)).
- Release [LVMSAM](https://arxiv.org/abs/2306.11925) and it's variants [BUID](https://github.com/CVHub520/X-AnyLabeling/tree/main/assets/examples/buid), [ISIC](https://github.com/CVHub520/X-AnyLabeling/tree/main/assets/examples/isic), [Kvasir](https://github.com/CVHub520/X-AnyLabeling/tree/main/assets/examples/kvasir).
- Support lane detection algorithm: [CLRNet](https://github.com/Turoad/CLRNet) (**CVPR'22**).
- Support 2D human whole-body pose estimation: [DWPose](https://github.com/IDEA-Research/DWPose/tree/main) (**ICCV'23 Workshop**).
- Jul. 2023:
- Add [label_converter.py](./tools/label_converter.py) script.
- Release [RT-DETR](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/rtdetr/README.md) model.
- Jun. 2023:
- Release [YOLO-NAS](https://github.com/Deci-AI/super-gradients/tree/master) model.
- Support instance segmentation: [YOLOv8-seg](https://github.com/ultralytics/ultralytics).
- Add [README_zh-CN.md](README_zh-CN.md) of X-AnyLabeling.
- May. 2023:
- Release version [0.1.0](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v0.1.0).
- Release [YOLOv6-Face](https://github.com/meituan/YOLOv6/tree/yolov6-face) for face detection and facial landmark detection.
- Release [SAM](https://arxiv.org/abs/2304.02643) and it's faster version [MobileSAM](https://arxiv.org/abs/2306.14289).
- Release [YOLOv5](https://github.com/ultralytics/yolov5), [YOLOv6](https://github.com/meituan/YOLOv6), [YOLOv7](https://github.com/WongKinYiu/yolov7), [YOLOv8](https://github.com/ultralytics/ultralytics), [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX).

## X-AnyLabeling

**X-AnyLabeling** is a powerful annotation tool that integrates an AI engine for fast and automatic labeling. Itโ€™s designed for visual data engineers, offering industrial-grade solutions for complex tasks.

## Features

- Processes both `images` and `videos`.
- Accelerates inference with `GPU` support.
- Allows custom models and secondary development.
- Supports one-click inference for all images in the current task.
- Enable import/export for formats like COCO, VOC, YOLO, DOTA, MOT, MASK, PPOCR.
- Handles tasks like `classification`, `detection`, `segmentation`, `caption`, `rotation`, `tracking`, `estimation`, `ocr` and so on.
- Supports diverse annotation styles: `polygons`, `rectangles`, `rotated boxes`, `circles`, `lines`, `points`, and annotations for `text detection`, `recognition`, and `KIE`.

### Model library

| **Object Detection** | **SOD with [SAHI](https://github.com/obss/sahi)** | **Facial Landmark Detection** | **Pose Estimation** |
| :---: | :---: | :---: | :---: |
| | | | |
| **Lane Detection** | **OCR** | **MOT** | **Instance Segmentation** |
| | | | |
| **Tagging** | **Grounding** | **Recognition** | **Rotation** |
| | | | |
| **Segment Anything** | **BC-SAM** | **Skin-SAM** | **Polyp-SAM** |
| | | | |

For more details, please refer to ๐Ÿ‘‰ [model_zoo](./docs/en/model_zoo.md) ๐Ÿ‘ˆ

## Docs

1. [Installation & Quickstart](./docs/en/get_started.md)
2. [Usage](./docs/en/user_guide.md)
3. [Customize a model](./docs/en/custom_model.md)

## Examples

- [Classification](./examples/classification/)
- [Image-Level](./examples/classification/image-level/README.md)
- [Shape-Level](./examples/classification/shape-level/README.md)
- [Detection](./examples/detection/)
- [HBB Object Detection](./examples/detection/hbb/README.md)
- [OBB Object Detection](./examples/detection/obb/README.md)
- [Segmentation](./examples/segmentation/README.md)
- [Instance Segmentation](./examples/segmentation/instance_segmentation/)
- [Binary Semantic Segmentation](./examples/segmentation/binary_semantic_segmentation/)
- [Multiclass Semantic Segmentation](./examples/segmentation/multiclass_semantic_segmentation/)
- [Description](./examples/description/)
- [Tagging](./examples/description/tagging/README.md)
- [Captioning](./examples/description/captioning/README.md)
- [Estimation](./examples/estimation/)
- [Pose Estimation](./examples/estimation/pose_estimation/README.md)
- [Depth Estimation](./examples/estimation/depth_estimation/README.md)
- [OCR](./examples/optical_character_recognition/)
- [Text Recognition](./examples/optical_character_recognition/text_recognition/)
- [Key Information Extraction](./examples/optical_character_recognition/key_information_extraction/README.md)
- [MOT](./examples/multiple_object_tracking/README.md)
- [Tracking by HBB Object Detection](./examples/multiple_object_tracking/README.md)
- [Tracking by OBB Object Detection](./examples/multiple_object_tracking/README.md)
- [Tracking by Instance Segmentation](./examples/multiple_object_tracking/README.md)
- [Tracking by Pose Estimation](./examples/multiple_object_tracking/README.md)
- [iVOS](./examples/interactive_video_object_segmentation/README.md)
- [Matting](./examples/matting/)
- [Image Matting](./examples/matting/image_matting/README.md)
- [Vision-Language](./examples/vision_language/)
- [Florence 2](./examples/vision_language/florence2/README.md)

## Contact

If you find this project helpful, please give it a โญstarโญ, and for any questions or issues, feel free to [create an issue](https://github.com/CVHub520/X-AnyLabeling/issues) or email [email protected].

## License

This project is released under the [GPL-3.0 license](./LICENSE).

## Acknowledgement

I extend my heartfelt thanks to the developers and contributors of [AnyLabeling](https://github.com/vietanhdev/anylabeling), [LabelMe](https://github.com/wkentaro/labelme), [LabelImg](https://github.com/tzutalin/labelIm), [roLabelImg](https://github.com/cgvict/roLabelImg), [PPOCRLabel](https://github.com/PFCCLab/PPOCRLabel) and [CVAT](https://github.com/opencv/cvat), whose work has been crucial to the success of this project.

## Citing

If you use this software in your research, please cite it as below:

```
@misc{X-AnyLabeling,
year = {2023},
author = {Wei Wang},
publisher = {Github},
organization = {CVHub},
journal = {Github repository},
title = {Advanced Auto Labeling Solution with Added Features},
howpublished = {\url{https://github.com/CVHub520/X-AnyLabeling}}
}
```

๐Ÿ” Back to Top