Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cy69855522/geo-cnn-pytorch-pyg

A Pytorch Implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”
https://github.com/cy69855522/geo-cnn-pytorch-pyg

3d-poin geo-cnn geocnn point-cloud pyg pytorch

Last synced: 26 days ago
JSON representation

A Pytorch Implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”

Awesome Lists containing this project

README

        

# 🏔 Geo-CNN-Pytorch-PYG
A Pytorch re-implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”

- This repository is a reproduction of the **GeoCNN**, which can support multiple GPUs.
- My enviroment:
- Ubuntu 18.04
- Anaconda Python 3.7
- [Pytorch](https://github.com/pytorch/pytorch) 1.5.0
- [PYG](https://github.com/rusty1s/pytorch_geometric) 1.5.0
- Cuda 10.2
- Cudnn 7.6.5
- GPU Memory >= 8G
- If you like graph neural network, too. Welcome to our 🐧 QQ group: `832405795`

## Accuracy on ModelNet40
|this implementation|original paper|
|---|---|
|93.2|93.4|

## How to Use This Code
- Prepare Data
- Download [ModelNet40](https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip) data set
- Move `modelnet40_normal_resampled.zip` into `data/ModelNet40_10000`
- Unzip `modelnet40_normal_resampled.zip`
- Rename `modelnet40_normal_resampled` to `raw`
- Train
- We can change args in the [Configuration part](https://github.com/cy69855522/Geo-CNN-Pytorch-PYG/blob/master/geocnn.py#L25) of the code if you want
- Then let’s start training: `python geocnn.py`
- Test
- Uncomment [this line](https://github.com/cy69855522/Geo-CNN-Pytorch-PYG/blob/master/geocnn.py#L248) and replace the weight path
- Set [only_test](https://github.com/cy69855522/Geo-CNN-Pytorch-PYG/blob/master/geocnn.py#L40) as `True`
- Then let’s start testing: `python geocnn.py`

## Bibtex
```python
@article{DBLP:journals/corr/abs-1811-07782,
author = {Shiyi Lan and
Ruichi Yu and
Gang Yu and
Larry S. Davis},
title = {Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN},
journal = {CoRR},
volume = {abs/1811.07782},
year = {2018},
url = {http://arxiv.org/abs/1811.07782},
archivePrefix = {arXiv},
eprint = {1811.07782},
timestamp = {Mon, 26 Nov 2018 12:52:45 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1811-07782},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```