An open API service indexing awesome lists of open source software.

https://github.com/cybersecurity-dev/awesome-building-implementing-ai-driven-solution

Awesome Building and Implementing AI-Driven Solution
https://github.com/cybersecurity-dev/awesome-building-implementing-ai-driven-solution

List: awesome-building-implementing-ai-driven-solution

ai ai-projects ai-tools artifical-intelligense artificialintelligence awesome awesome-list awesome-lists deep-learning deeplearning machine-learning machinelearning

Last synced: 3 months ago
JSON representation

Awesome Building and Implementing AI-Driven Solution

Awesome Lists containing this project

README

          

# Awesome [Building](https://en.wikipedia.org/wiki/Machine_learning) and [Implementing](https://en.wikipedia.org/wiki/Deep_learning) [AI-Driven](https://en.wikipedia.org/wiki/Artificial_intelligence) Solution [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
[![YouTube](https://img.shields.io/badge/YouTube-%23FF0000.svg?style=for-the-badge&logo=YouTube&logoColor=white)](https://youtube.com/playlist?list=PL9V4Zu3RroiUkdF3r3vNa6YRmZA_H7MKK&si=z_zWeZrWFnc9hKKI) [![Reddit](https://img.shields.io/badge/Reddit-FF4500?style=for-the-badge&logo=reddit&logoColor=white)](https://www.reddit.com/r/ArtificialInteligence/)


GitHub
 
YouTube
 
My Awesome Lists

## AI Projects: Step by Steps
AI process involves a series of steps to build, evaluate, and deploy a model that can learn from data and make predictions or decisions.
### 1. Data Collection
You can access some datasets from the link below:
- [Awesome Benign Datasets](https://github.com/cybersecurity-dev/awesome-benign-datasets)
- [Awesome Malware Datasets](https://github.com/cybersecurity-dev/awesome-malware-datasets)
- [Awesome Smart Contract Datasets](https://github.com/cybersecurity-dev/awesome-smartcontract-datasets)

### 2. Data Preparation and Preprocessing
#### 2.1 Data Cleaning
#### 2.2 Feature Engineering
#### 2.3 Data Transformation

##
### Library
[![Keras](https://img.shields.io/badge/Keras-D00000?logo=keras&logoColor=fff)](https://keras.io/)[![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/)[![Scikit-learn](https://img.shields.io/badge/-scikit--learn-%23F7931E?logo=scikit-learn&logoColor=white)](https://scikit-learn.org/)[![TensorFlow](https://img.shields.io/badge/TensorFlow-ff8f00?logo=tensorflow&logoColor=white)](https://www.tensorflow.org/)

- [Keras](https://github.com/keras-team/keras) - Deep [Learning](https://keras.io/) for humans
- [PyTorch](https://github.com/pytorch/pytorch) - Tensors and Dynamic [neural networks](https://pytorch.org/) in Python with strong GPU acceleration.
- [Scikit-learn](https://github.com/scikit-learn/scikit-learn) - [Scikit-learn](https://scikit-learn.org/stable/) is an open-source Python library widely used for machine learning.
- [TensorFlow](https://github.com/tensorflow/tensorflow) - An Open Source [Machine Learning Framework](https://www.tensorflow.org/) for Everyone.
#### AutoML
- [AutoKeras](https://github.com/keras-team/autokeras) - [AutoKeras](https://autokeras.com/): An AutoML system based on Keras.
- [Auto-PyTorch](https://github.com/automl/Auto-PyTorch) - [Automatic architecture](https://automl.github.io/Auto-PyTorch) search and hyperparameter optimization for PyTorch.
- [Auto-sklearn](https://github.com/automl/auto-sklearn) - [Automated](https://automl.github.io/auto-sklearn/) Machine Learning with scikit-learn.