Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cycleuser/MLAPP-CN

A Chinese Notes of MLAPP,MLAPP 中文笔记项目 https://zhuanlan.zhihu.com/python-kivy
https://github.com/cycleuser/MLAPP-CN

Last synced: 2 months ago
JSON representation

A Chinese Notes of MLAPP,MLAPP 中文笔记项目 https://zhuanlan.zhihu.com/python-kivy

Awesome Lists containing this project

README

        

# MLAPP-CN

MLAPP 中文笔记项目

## 在线阅读

## 笔记项目概述

本系列是一个新坑, 还希望大家批评指正!

### 书中疑似错误记录

https://github.com/Kivy-CN/MLAPP-CN/blob/master/Error.md

### 笔记进度追踪

- [x] 01 Introduction 1~26
- [x] 02 Probability 27~64 (练习略)
- [x] 03 Generative models for discrete data 65~96(练习略)
- [x] 04 Gaussian models 97~148(练习略)
- [x] 05 Bayesian statistics 149~190(练习略)
- [x] 06 Frequentist statistics 191~216(练习略)
- [x] 07 Linear regression 217~244(练习略)
- [x] 08 Logistic regression 245~280(练习略)
- [x] 09 Generalized linear models and the exponential family 281~306(练习略)
- [x] 10 Directed graphical models (Bayes nets) 307~336(练习略)
- [x] 11 Mixture models and the EM algorithm 337~380(当前进度 337)
- [ ] 12 Latent linear models 381~420
- [ ] 13 Sparse linear models 421~478
- [ ] 14 Kernels 479~514
- [ ] 15 Gaussian processes 515~542
- [ ] 16 Adaptive basis function models 543~588
- [ ] 17 Markov and hidden Markov models 589~630
- [ ] 18 State space models 631~660
- [ ] 19 Undirected graphical models (Markov random fields) 661~706
- [ ] 20 Exact inference for graphical models 707~730
- [ ] 21 Variational inference 731~766
- [ ] 22 More variational inference 767~814
- [ ] 23 Monte Carlo inference 815~836
- [ ] 24 Markov chain Monte Carlo (MCMC) inference 837~874
- [ ] 25 Clustering 875~906
- [ ] 26 Graphical model structure learning 907~944
- [ ] 27 Latent variable models for discrete data 945~994
- [ ] 28 Deep learning 995~1009

# MLAPP-CN

MLAPP Chinese Notes Project

## Read Online

## Note Project Overview

This series is a new pit, and I hope everyone will criticize me!

### Suspected error record in book

https://github.com/Kivy-CN/MLAPP-CN/blob/master/Error.md

### note progress tracking

- [x] 01 Introduction 1~26
- [x] 02 Probability 27~64 (Exercise slightly)
- [x] 03 Generative models for discrete data 65~96 (execution slightly)
- [x] 04 Gaussian models 97~148 (execution slightly)
- [x] 05 Bayesian statistics 149~190 (practice slightly)
- [x] 06 Frequentist statistics 191~216 (execution slightly)
- [x] 07 Linear regression 217~244 (practice slightly)
- [x] 08 Logistic regression 245~280 (practice slightly)
- [x] 09 Generalized linear models and the exponential family 281~306 (execution slightly)
- [x] 10 Directed graphical models (Bayes nets) 307~336 (practice slightly)
- [x] 11 Mixture models and the EM algorithm 337~380 (current progress 337)
- [ ] 12 Latent linear models 381~420
- [ ] 13 Sparse linear models 421~478
- [ ] 14 Kernels 479~514
- [ ] 15 Gaussian processes 515~542
- [ ] 16 Adaptive basis function models 543~588
- [ ] 17 Markov and hidden Markov models 589~630
- [ ] 18 State space models 631~660
- [ ] 19 Undirected graphical models (Markov random fields) 661~706
- [ ] 20 Exact inference for graphical models 707~730
- [ ] 21 Variational inference 731~766
- [ ] 22 More variational inference 767~814
- [ ] 23 Monte Carlo inference 815~836
- [ ] 24 Markov chain Monte Carlo (MCMC) inference 837~874
- [ ] 25 Clustering 875~906
- [ ] 26 Graphical model structure learning 907~944
- [ ] 27 Latent variable models for discrete data 945~994
- [ ] 28 Deep learning 995~1009