Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cyrta/awesome-speech-enhancement
A curated list of awesome Speech Enhancement papers, libraries, datasets, and other resources.
https://github.com/cyrta/awesome-speech-enhancement
List: awesome-speech-enhancement
awesome awesome-list deep-learning denoising dereverberation noise-reduction speech-denoising speech-enhancement speech-processing speech-separation
Last synced: 3 months ago
JSON representation
A curated list of awesome Speech Enhancement papers, libraries, datasets, and other resources.
- Host: GitHub
- URL: https://github.com/cyrta/awesome-speech-enhancement
- Owner: cyrta
- License: cc0-1.0
- Created: 2019-09-09T17:14:58.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-09-09T17:51:07.000Z (about 5 years ago)
- Last Synced: 2024-05-22T22:00:25.041Z (6 months ago)
- Topics: awesome, awesome-list, deep-learning, denoising, dereverberation, noise-reduction, speech-denoising, speech-enhancement, speech-processing, speech-separation
- Homepage: http://cyrta.com/awesome-speech-enhancement/
- Size: 13.7 KB
- Stars: 58
- Watchers: 6
- Forks: 15
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: code-of-conduct.md
Awesome Lists containing this project
- Awesome-Paper-List - Speech Enhancement
README
# 🗣️ Awesome Speech Enhancement 🎙 🔊 🎤 📱💻 💬
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re) [![Contribution](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/cyrta/awesome-speech-enhancement/blob/master/CONTRIBUTING.md)[Speech enhancement](https://en.wikipedia.org/wiki/Speech_enhancement) aims to improve speech quality by using various algorithms. The objective of enhancement is improvement in intelligibility and/or overall perceptual quality of degraded speech signal using audio signal processing techniques.
Enhancing of speech degraded by noise, or noise reduction, is the most important field of speech enhancement, and used for many applications such as mobile phones, VoIP, teleconferencing systems, speech recognition, and hearing aids.
![image of speech enhancement](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/02/IMG_0931.jpg)
This is a collection of speech enhancement introduction, tips&tricks, methods,
papers, books, software, and other resources.* Please read [the contribution guidelines](contributing.md) before contributing.
## Table of Content
* [Problems](#problems)
* [Methods](#methods)
* [Papers](#papers)
* [Software](#software)
* [Books](#books)
* [Speech Data](#speech-data)
* [Research Groups](#research-groups)
* [Lectures](#lectures)------------------------------------------------------------------------------
## Problems
* Noise
* Reverberation
* Distortion## Methods
* [Comparison of Speech Enhancement Algorithms - Vihari et al, 2016](https://www.sciencedirect.com/science/article/pii/S1877050916310973)
* Noise Reduction
* Beamforming
* DeReverberation
* Distortion removal
* Quality Expansion
* Audio InpaintingThe algorithms of speech enhancement for noise reduction can be categorized into three fundamental classes: filtering techniques, spectral restoration, and model-based methods .
## Publications / Papers
### 2019
* [s]()### 2018
* [s]()
### 2018
* [s]()## Software
* []()
## Books
* J. Benesty, M. M. Sondhi, Y. Huang (ed). [Springer Handbook of Speech Processing](). Springer, 2007. ISBN 978-3-540-49125-5.
* J. Benesty, S. Makino, J. Chen (ed). [Speech Enhancement](). Springer, 2005. ISBN 978-3-540-24039-6.
* P. C. Loizou. [Speech Enhancement: Theory and Practice](). CRC Press, 2013. ISBN 978-1-466-50421-9.
* E. Vincent, T. Virtanen, S.Gannot. [Audio Source Separation and Speech Enhancement](). Wiley , 2018. ISBN 978-1-119-27986-0.## Speech Data
* [TED-LIUM Corpus](http://www.openslr.org/7/)
* [LibriSpeech ASR Corpus](http://www.openslr.org/12/)
* [TIMIT Corpus Sample (LDC93S1)](https://www.kaggle.com/nltkdata/timitcorpus)## Research Groups
* [UIUC Statistical Speech Technology Group](http://www.isle.illinois.edu/sst/)
* [Imperial College, Communications and Signal Processing Group - London, U.K]()* [Microsoft Research, Audio and Acoustics Research Group](https://www.microsoft.com/en-us/research/group/audio-and-acoustics-research-group/)
## Learning materials
### Lectures* [High-Accuracy Neural-Network Models for Speech Enhancement - 2017](https://www.microsoft.com/en-us/research/video/high-accuracy-neural-network-models-speech-enhancement/)
* [ DNN-Based Online Speech Enhancement Using Multitask Learning and Suppression Rule Estimation - 2015](https://www.microsoft.com/en-us/research/video/dnn-based-online-speech-enhancement-using-multitask-learning-and-suppression-rule-estimation/)
* [Microphone array signal processing: beyond the beamformer - 2011](https://www.microsoft.com/en-us/research/video/microphone-array-signal-processing-beyond-the-beamformer/)### Tech Blog posts
-
### Video tutorials
-----
## License[![CC0](http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)](https://creativecommons.org/publicdomain/zero/1.0/)
This project is licensed under the Creative Commons CC0 1.0 Universal (CC-0) License. See [`LICENSE`](LICENSE) for the full license text.