Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/d99kris/rapidcsv

C++ CSV parser library
https://github.com/d99kris/rapidcsv

c-plus-plus c-plus-plus-11 csv-parser library linux macos utf16 utf8 windows

Last synced: 2 days ago
JSON representation

C++ CSV parser library

Awesome Lists containing this project

README

        

Rapidcsv
========

| **Linux** | **Mac** | **Windows** |
|-----------|---------|-------------|
| [![Linux](https://github.com/d99kris/rapidcsv/workflows/Linux/badge.svg)](https://github.com/d99kris/rapidcsv/actions?query=workflow%3ALinux) | [![macOS](https://github.com/d99kris/rapidcsv/workflows/macOS/badge.svg)](https://github.com/d99kris/rapidcsv/actions?query=workflow%3AmacOS) | [![Windows](https://github.com/d99kris/rapidcsv/workflows/Windows/badge.svg)](https://github.com/d99kris/rapidcsv/actions?query=workflow%3AWindows) |

Rapidcsv is an easy-to-use C++ CSV parser library. It supports C++11 (and
later), is header-only and comes with a basic test suite.

The library was featured in the book
[C++20 for Programmers](https://deitel.com/c-plus-plus-20-for-programmers/).

Example Usage
=============
Here is a simple example reading a CSV file and getting 'Close' column as a
vector of floats.

[colhdr.csv](examples/colhdr.csv) content:
```
Open,High,Low,Close,Volume,Adj Close
64.529999,64.800003,64.139999,64.620003,21705200,64.620003
64.419998,64.730003,64.190002,64.620003,20235200,64.620003
64.330002,64.389999,64.050003,64.360001,19259700,64.360001
64.610001,64.949997,64.449997,64.489998,19384900,64.489998
64.470001,64.690002,64.300003,64.620003,21234600,64.620003
```

[ex001.cpp](examples/ex001.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/colhdr.csv");

std::vector col = doc.GetColumn("Close");
std::cout << "Read " << col.size() << " values." << std::endl;
}
```

Refer to section [More Examples](#more-examples) below for more examples.
The [tests](tests/) directory also contains many simple usage examples.

Supported Platforms
===================
Rapidcsv is implemented using C++11 with the intention of being portable. It's
been tested on:
- macOS Ventura 13.0
- Ubuntu 22.04 LTS
- Windows 10 / Visual Studio 2019

Installation
============
Simply copy
[src/rapidcsv.h](https://raw.githubusercontent.com/d99kris/rapidcsv/master/src/rapidcsv.h)
to your project/include directory and include it.

Rapidcsv is also available via
[vcpkg](https://vcpkg.io/en/packages.html) and
[conan](https://conan.io/center/rapidcsv) package managers.

More Examples
=============

Several of the following examples are also provided in the `examples/`
directory and can be executed directly under Linux and macOS. Example running
ex001.cpp:

```
./examples/ex001.cpp
```

Reading a File with Column and Row Headers
------------------------------------------
By default rapidcsv treats the first row as column headers, and the first
column is treated as data. This allows accessing columns using their labels,
but not rows or cells (only using indices). In order to treat the first column
as row headers one needs to use LabelParams and set pRowNameIdx to 0.

### Column and Row Headers
[colrowhdr.csv](examples/colrowhdr.csv) content:
```
Date,Open,High,Low,Close,Volume,Adj Close
2017-02-24,64.529999,64.800003,64.139999,64.620003,21705200,64.620003
2017-02-23,64.419998,64.730003,64.190002,64.620003,20235200,64.620003
2017-02-22,64.330002,64.389999,64.050003,64.360001,19259700,64.360001
2017-02-21,64.610001,64.949997,64.449997,64.489998,19384900,64.489998
2017-02-17,64.470001,64.690002,64.300003,64.620003,21234600,64.620003
```

[ex002.cpp](examples/ex002.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/colrowhdr.csv", rapidcsv::LabelParams(0, 0));

std::vector close = doc.GetRow("2017-02-22");
std::cout << "Read " << close.size() << " values." << std::endl;

long long volume = doc.GetCell("Volume", "2017-02-22");
std::cout << "Volume " << volume << " on 2017-02-22." << std::endl;
}
```

### Row Headers Only
[rowhdr.csv](examples/rowhdr.csv) content:
```
2017-02-24,64.529999,64.800003,64.139999,64.620003,21705200,64.620003
2017-02-23,64.419998,64.730003,64.190002,64.620003,20235200,64.620003
2017-02-22,64.330002,64.389999,64.050003,64.360001,19259700,64.360001
2017-02-21,64.610001,64.949997,64.449997,64.489998,19384900,64.489998
2017-02-17,64.470001,64.690002,64.300003,64.620003,21234600,64.620003
```

[ex003.cpp](examples/ex003.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/rowhdr.csv", rapidcsv::LabelParams(-1, 0));

std::vector row = doc.GetRow("2017-02-22");
std::cout << "Read " << row.size() << " values." << std::endl;
}
```

### No Headers
[nohdr.csv](examples/nohdr.csv) content:
```
64.529999,64.800003,64.139999,64.620003,21705200,64.620003
64.419998,64.730003,64.190002,64.620003,20235200,64.620003
64.330002,64.389999,64.050003,64.360001,19259700,64.360001
64.610001,64.949997,64.449997,64.489998,19384900,64.489998
64.470001,64.690002,64.300003,64.620003,21234600,64.620003
```

[ex004.cpp](examples/ex004.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/nohdr.csv", rapidcsv::LabelParams(-1, -1));

std::vector close = doc.GetColumn(5);
std::cout << "Read " << close.size() << " values." << std::endl;

long long volume = doc.GetCell(4, 2);
std::cout << "Volume " << volume << " on 2017-02-22." << std::endl;
}
```

Reading a File with Custom Separator
------------------------------------
For reading of files with custom separator (i.e. not comma), one need to
specify the SeparatorParams argument. The following example reads a file using
semi-colon as separator.

[semi.csv](examples/semi.csv) content:
```
Date;Open;High;Low;Close;Volume;Adj Close
2017-02-24;64.529999;64.800003;64.139999;64.620003;21705200;64.620003
2017-02-23;64.419998;64.730003;64.190002;64.620003;20235200;64.620003
2017-02-22;64.330002;64.389999;64.050003;64.360001;19259700;64.360001
2017-02-21;64.610001;64.949997;64.449997;64.489998;19384900;64.489998
2017-02-17;64.470001;64.690002;64.300003;64.620003;21234600;64.620003
```

[ex005.cpp](examples/ex005.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/semi.csv", rapidcsv::LabelParams(0, 0),
rapidcsv::SeparatorParams(';'));

std::vector close = doc.GetColumn("Close");
std::cout << "Read " << close.size() << " values." << std::endl;

long long volume = doc.GetCell("Volume", "2017-02-22");
std::cout << "Volume " << volume << " on 2017-02-22." << std::endl;
}
```

Supported Get/Set Data Types
----------------------------
The internal cell representation in the Document class is using std::string
and when other types are requested, standard conversion routines are used.
All standard conversions are relatively straight-forward, with the
exception of `char` for which rapidcsv interprets the cell's (first) byte
as a character. The following example illustrates the supported data types.

[colrowhdr.csv](examples/colrowhdr.csv) content:
```
Date,Open,High,Low,Close,Volume,Adj Close
2017-02-24,64.529999,64.800003,64.139999,64.620003,21705200,64.620003
2017-02-23,64.419998,64.730003,64.190002,64.620003,20235200,64.620003
2017-02-22,64.330002,64.389999,64.050003,64.360001,19259700,64.360001
2017-02-21,64.610001,64.949997,64.449997,64.489998,19384900,64.489998
2017-02-17,64.470001,64.690002,64.300003,64.620003,21234600,64.620003
```

[ex006.cpp](examples/ex006.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
rapidcsv::Document doc("examples/colrowhdr.csv", rapidcsv::LabelParams(0, 0));

std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
std::cout << doc.GetCell("Volume", "2017-02-22") << std::endl;
}
```

Global Custom Data Type Conversion
----------------------------------
One may override conversion routines (or add new ones) by implementing ToVal()
and/or ToStr(). Below is an example overriding int conversion, to instead provide
two decimal fixed-point numbers. Also see
[tests/test035.cpp](https://github.com/d99kris/rapidcsv/blob/master/tests/test035.cpp)
for a test overriding ToVal() and ToStr().

[ex008.cpp](examples/ex008.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

namespace rapidcsv
{
template<>
void Converter::ToVal(const std::string& pStr, int& pVal) const
{
pVal = static_cast(roundf(100.0f * std::stof(pStr)));
}
}

int main()
{
rapidcsv::Document doc("examples/colrowhdr.csv", rapidcsv::LabelParams(0, 0));

std::vector close = doc.GetColumn("Close");
std::cout << "close[0] = " << close[0] << std::endl;
std::cout << "close[1] = " << close[1] << std::endl;
}
```

Custom Data Type Conversion Per Call
------------------------------------
It is also possible to override conversions on a per-call basis, enabling more
flexibility. This is illustrated in the following example. Additional conversion
override usage can be found in the test
[tests/test063.cpp](https://github.com/d99kris/rapidcsv/blob/master/tests/test063.cpp)

[ex009.cpp](examples/ex009.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

void ConvFixPoint(const std::string& pStr, int& pVal)
{
pVal = static_cast(roundf(100.0f * std::stof(pStr)));
}

struct MyStruct
{
int val = 0;
};

void ConvMyStruct(const std::string& pStr, MyStruct& pVal)
{
pVal.val = static_cast(roundf(100.0f * std::stof(pStr)));
}

int main()
{
rapidcsv::Document doc("examples/colrowhdr.csv", rapidcsv::LabelParams(0, 0));

std::cout << "regular = " << doc.GetCell("Close", "2017-02-21") << "\n";
std::cout << "fixpointfunc = " << doc.GetCell("Close", "2017-02-21", ConvFixPoint) << "\n";

auto convFixLambda = [](const std::string& pStr, int& pVal) { pVal = static_cast(roundf(100.0f * stof(pStr))); };
std::cout << "fixpointlambda = " << doc.GetCell("Close", "2017-02-21", convFixLambda) << "\n";

std::cout << "mystruct = " << doc.GetCell("Close", "2017-02-21", ConvMyStruct).val << "\n";
}
```

Reading CSV Data from a Stream or String
----------------------------------------
In addition to specifying a filename, rapidcsv supports constructing a Document
from a stream and, indirectly through stringstream, from a string. File streams
used with rapidcsv should be opened in `std::ios::binary` mode to enable full
functionality. Here is a simple example reading CSV data from a string:

[ex007.cpp](examples/ex007.cpp) content:
```cpp
#include
#include
#include "rapidcsv.h"

int main()
{
const std::string& csv =
"Date,Open,High,Low,Close,Volume,Adj Close\n"
"2017-02-24,64.529999,64.800003,64.139999,64.620003,21705200,64.620003\n"
"2017-02-23,64.419998,64.730003,64.190002,64.620003,20235200,64.620003\n"
"2017-02-22,64.330002,64.389999,64.050003,64.360001,19259700,64.360001\n"
"2017-02-21,64.610001,64.949997,64.449997,64.489998,19384900,64.489998\n"
"2017-02-17,64.470001,64.690002,64.300003,64.620003,21234600,64.620003\n"
;

std::stringstream sstream(csv);
rapidcsv::Document doc(sstream, rapidcsv::LabelParams(0, 0));

std::vector close = doc.GetColumn("Close");
std::cout << "Read " << close.size() << " values." << std::endl;

long long volume = doc.GetCell("Volume", "2017-02-22");
std::cout << "Volume " << volume << " on 2017-02-22." << std::endl;
}
```

Reading a File with Invalid Numbers (e.g. Empty Cells) as Numeric Data
-----------------------------------------------------------------------
By default rapidcsv throws an exception if one tries to access non-numeric
data as a numeric data type, as it basically propagates the underlying
conversion routines' exceptions to the calling application.

The reason for this is to ensure data correctness. If one wants to be able
to read data with invalid numbers as numeric data types, one can use
ConverterParams to configure the converter to default to a numeric value.
The value is configurable and by default it's
std::numeric_limits::signaling_NaN() for float types, and 0 for
integer types. Example:

```cpp
rapidcsv::Document doc("file.csv", rapidcsv::LabelParams(),
rapidcsv::SeparatorParams(),
rapidcsv::ConverterParams(true));
```

Check if a Column Exists
------------------------
Rapidcsv provides the methods GetColumnNames() and GetRowNames() to retrieve
the column and row names. To check whether a particular column name exists
one can for example do:

```cpp
rapidcsv::Document doc("file.csv");
std::vector columnNames = doc.GetColumnNames();
bool columnExists =
(std::find(columnNames.begin(), columnNames.end(), "A") != columnNames.end());
```

Handling Quoted Cells
---------------------
By default rapidcsv automatically dequotes quoted cells (i.e. removes the encapsulating
`"` characters from `"example quoted cell"`). This functionality may be disabled by
passing `pAutoQuote = false` in `SeparatorParams`, example:

```cpp
rapidcsv::Document doc("file.csv", rapidcsv::LabelParams(),
rapidcsv::SeparatorParams(',' /* pSeparator */,
false /* pTrim */,
rapidcsv::sPlatformHasCR /* pHasCR */,
false /* pQuotedLinebreaks */,
false /* pAutoQuote */));
```

Skipping Empty and Comment Lines
--------------------------------
Rapidcsv reads all lines by default, but may be called to ignore comment lines
starting with a specific character, example:

```cpp
rapidcsv::Document doc("file.csv", rapidcsv::LabelParams(), rapidcsv::SeparatorParams(),
rapidcsv::ConverterParams(),
rapidcsv::LineReaderParams(true /* pSkipCommentLines */,
'#' /* pCommentPrefix */));
```

Using LineReaderParams it is also possible to skip empty lines, example:

```cpp
rapidcsv::Document doc("file.csv", rapidcsv::LabelParams(), rapidcsv::SeparatorParams(),
rapidcsv::ConverterParams(),
rapidcsv::LineReaderParams(false /* pSkipCommentLines */,
'#' /* pCommentPrefix */,
true /* pSkipEmptyLines */));
```

UTF-16 and UTF-8
----------------
Rapidcsv's preferred encoding for non-ASCII text is UTF-8. UTF-16 LE and
UTF-16 BE can be read and written by rapidcsv on systems where codecvt header
is present. Define HAS_CODECVT before including rapidcsv.h in order to enable
the functionality. Rapidcsv unit tests automatically detects the presence of
codecvt and sets HAS_CODECVT as needed, see [CMakeLists.txt](CMakeLists.txt)
for reference. When enabled, the UTF-16 encoding of any loaded file is
automatically detected.

CMake FetchContent
------------------
Rapidcsv may be included in a CMake project using FetchContent. Refer to the
[CMake FetchContent Example Project](examples/cmake-fetchcontent) and in
particular its [CMakeLists.txt](examples/cmake-fetchcontent/CMakeLists.txt).

Locale Independent Parsing
--------------------------
Rapidcsv uses locale-dependent conversion functions when parsing float values
by default. It is possible to configure rapidcsv to use locale independent
parsing by setting `mNumericLocale` in `ConverterParams`, see for example
[tests/test087.cpp](https://github.com/d99kris/rapidcsv/blob/master/tests/test087.cpp)

API Documentation
=================
The following classes makes up the Rapidcsv interface:
- [class rapidcsv::Document](doc/rapidcsv_Document.md)
- [class rapidcsv::LabelParams](doc/rapidcsv_LabelParams.md)
- [class rapidcsv::SeparatorParams](doc/rapidcsv_SeparatorParams.md)
- [class rapidcsv::ConverterParams](doc/rapidcsv_ConverterParams.md)
- [class rapidcsv::LineReaderParams](doc/rapidcsv_LineReaderParams.md)
- [class rapidcsv::no_converter](doc/rapidcsv_no_converter.md)
- [class rapidcsv::Converter< T >](doc/rapidcsv_Converter.md)

Technical Details
=================
Rapidcsv uses cmake for its tests. Commands to build and execute the test suite:

mkdir -p build && cd build && cmake -DRAPIDCSV_BUILD_TESTS=ON .. && make && ctest -C unit --output-on-failure && ctest -C perf --verbose ; cd -

Rapidcsv uses [doxygenmd](https://github.com/d99kris/doxygenmd) to generate
its Markdown API documentation:

doxygenmd src doc

Rapidcsv uses Uncrustify to ensure consistent code formatting:

uncrustify -c uncrustify.cfg --no-backup src/rapidcsv.h

Alternatives
============
There are many CSV parsers for C++, for example:
- [Fast C++ CSV Parser](https://github.com/ben-strasser/fast-cpp-csv-parser)
- [Vince's CSV Parser](https://github.com/vincentlaucsb/csv-parser)

License
=======
Rapidcsv is distributed under the BSD 3-Clause license. See
[LICENSE](https://github.com/d99kris/rapidcsv/blob/master/LICENSE) file.

Contributions
=============
Bugs, PRs, etc are welcome on the GitHub project page
https://github.com/d99kris/rapidcsv

Keywords
========
c++, c++11, csv parser, comma separated values, single header library.