https://github.com/daedalus/aiscripts
Scripts created with AI of white papers and publications
https://github.com/daedalus/aiscripts
ai bloomfilter cassowary-algorithm cuckoo-filter feistel-network gemm gpt karatsuba karatsuba-matrix-multiplication llm meta-gradient-descent noprop phylolm whitepaper zeedlm zeromerge
Last synced: 14 days ago
JSON representation
Scripts created with AI of white papers and publications
- Host: GitHub
- URL: https://github.com/daedalus/aiscripts
- Owner: daedalus
- Created: 2025-04-07T16:53:17.000Z (about 1 month ago)
- Default Branch: master
- Last Pushed: 2025-04-29T16:12:24.000Z (19 days ago)
- Last Synced: 2025-04-29T17:28:07.482Z (19 days ago)
- Topics: ai, bloomfilter, cassowary-algorithm, cuckoo-filter, feistel-network, gemm, gpt, karatsuba, karatsuba-matrix-multiplication, llm, meta-gradient-descent, noprop, phylolm, whitepaper, zeedlm, zeromerge
- Language: Jupyter Notebook
- Homepage:
- Size: 907 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# AIscripts #
**AIscripts** is a collection of experimental algorithms, machine learning components, and optimization tools inspired by various domains. This repository serves as a playground for exploring computational efficiency, mathematical models, and AI-driven solutions.

---
## Features
### Core Components
- **Matrix Operations**:`GEMM_tiled.py` - Tiled implementation of General Matrix Multiply (GEMM).
`KMM.py` - Karatsuba Matrix Multiplication utilities.
`MGD.py` - Meta Gradient Descent optimizer.
- **AI/ML Tools**:
`SeedLM.py` - Seed and coefficient selection algorithm for a single weight block.
`aicommit.py` - AI-assisted Git commit message generator.
`barcode_ssd_mobilenet_v1_dmp25_quant.tflite.runner.py` - TensorFlow Lite runner for SSD MobileNet-based barcode detection.
`ZeroMerge.py` - Parameter-Free KV Cache Compression for Memory-Efficient Long-Context LLMs.
`NoProp.py` - Training Neural Networks without Back-propagation or Forward-propagation.
`PhyloLM.ipynb` and `phylolm.py` - Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks.
`DLFloat.py` - Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float
- **Probabilistic Data Structures**:
`bloomfilter.py` - Classic Bloom filter implementation.
`cuckoofilter.py` - Space-efficient Cuckoo filter.
- **Optimization & Cryptography**:`minimal_feistel_network.py` - Compact Feistel network cipher.
- **Combinatorial Algorithms**:`polyomino_tiling.py` - Polyomino tiling solver.
`cassowary.py` - Constraint-solving algorithm implementation.
- **Misc**:
`calcDa.py` - Density altitude calculator.
`mdnscan.py` - mdns simple scanner.
`mbf.py` - Minimal bloom filter implementation.
---
## Getting Started
### Prerequisites
- Python 3.8+
- `pip install -r requirements.txt`
*(Example dependencies: NumPy, TensorFlow Lite, PyTorch)*### Basic Usage
```bash
# Run matrix multiplication benchmark
python GEMM_tiled.py --size 1024# Generate AI-assisted commit message
python aicommit.py --diff