https://github.com/damienbod/math-docs
docs for some math equations
https://github.com/damienbod/math-docs
math mathjax tex
Last synced: about 1 month ago
JSON representation
docs for some math equations
- Host: GitHub
- URL: https://github.com/damienbod/math-docs
- Owner: damienbod
- License: mit
- Created: 2022-05-28T09:10:10.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-05-28T18:30:03.000Z (almost 3 years ago)
- Last Synced: 2025-03-04T13:46:20.076Z (about 2 months ago)
- Topics: math, mathjax, tex
- Homepage:
- Size: 57.6 KB
- Stars: 8
- Watchers: 3
- Forks: 13
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Exploring github markdown for math
## Quadratic equations
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
$(a+b)^2$
$$\eqalign{
(a+b)^2 &= (a+b)(a+b) \\
&= a^2 + ab + ba + b^2 \\
&= a^2 + 2ab + b^2
}$$$(a-b)^2$
$$\eqalign{
(a-b)^2 &= (a-b)(a-b) \\
&= a^2 - ab - ba + b^2 \\
&= a^2 - 2ab + b^2
}$$$(a-b)(a+b)$
$$\eqalign{
(a+b)(a-b) &= a^2 - ab + ba - b^2 \\
&= a^2 - b^2
}$$## Functions
$$ f(x) = {\sqrt{5x^2+2x-1}+(x-2)^2 } $$
$$ g(x) = {\\frac{a}{1-a^2} }$$
$$ f(x) = {(x + 2) \over (2x + 1)} $$
$$ f(x) = { \sqrt[3]{x^2} }$$
$$ \sqrt[5]{34}$$
## Trigonometry$$ cos^2 \theta + sin^2 \theta = 1 $$
$$ tan 2 \theta = {2tan \theta \over 1 - tan^2 \theta} $$
$$\eqalign{
cos 2 \theta = cos^2 \theta - sin^2 \theta \\
&= 2 cos^2 \theta -1 \\
&= 1 - 2sin^2 \theta
}$$Prove $ \sqrt{ 1 - cos^2 \theta \over 1- sin^2 \theta} = tan \theta $
$$ \sqrt{ 1 - cos^2 \theta \over 1- sin^2 \theta} = \sqrt{ sin^2 \theta \over cos^2 \theta} = {sin \theta \over cos \theta} = Tan \theta $$
## Calculus
$$\eqalign{
f(x) = {3x^4} \implies {dy \over dx} = 12x^3
}$$$$\eqalign{
f(x) = {2x^{-3/2}} \implies {dy \over dx} = -3x^{-5/2} &= - {3 \over \sqrt{x^5}}
}$$If $x = 2t + 1$ and $ y = t^2$ find ${dy \over dx}$ ?
$$\eqalign{
x = 2t + 1 \implies {dx \over dt} = 2 \\
y = t^2 \implies {dy \over dt} = 2t \\
{dy \over dx} = {dy \over dt} \div {dx \over dt} \\
\implies 2t \div 2 = t
}$$## Integration
Evaluate $\int_1^2 (x + 4)^2 dx $
$$\eqalign{
\int_1^2 (x + 4)^2 dx = \int_1^2 (x^2 + 8x + 16) dx \\
&= \left\lbrack {x^3 \over 3} + {8x^2 \over 2} + 16x \right\rbrack_1^2 \\
&= \left\lbrack {8 \over 3} + {8 * 4 \over 2} + 16 * 2 \right\rbrack - \left\lbrack {1 \over 3} + {8 \over 2} + 16 \right\rbrack
}$$## Matrix
$$ {\left\lbrack \matrix{2 & 3 \cr 4 & 5} \right\rbrack} * \left\lbrack \matrix{1 & 0 \cr 0 & 1} \right\rbrack = \left\lbrack \matrix{2 & 3 \cr 4 & 5} \right\rbrack $$
## Sum
$$\sum_{n=1}^n n = {n \over 2} (n + 1) $$
$$\sum_{n=1}^n n^2 = {n \over 6} (n + 1)(2n + 1) $$
# Links
https://github.blog/changelog/2022-05-19-render-mathematical-expressions-in-markdown/
https://www.mathjax.org/
http://docs.mathjax.org/en/latest/
https://docs.mathjax.org/en/v2.7-latest/tex.html
https://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htm