Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/danfeix/rpn
Code Repository for Regression Planning Networks
https://github.com/danfeix/rpn
machine-learning pybullet pytorch robotics robotics-simulation
Last synced: 6 days ago
JSON representation
Code Repository for Regression Planning Networks
- Host: GitHub
- URL: https://github.com/danfeix/rpn
- Owner: danfeiX
- License: mit
- Created: 2019-10-26T22:09:39.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-07-25T10:57:09.000Z (6 months ago)
- Last Synced: 2025-01-09T14:32:32.385Z (13 days ago)
- Topics: machine-learning, pybullet, pytorch, robotics, robotics-simulation
- Language: Python
- Homepage:
- Size: 3.42 MB
- Stars: 59
- Watchers: 4
- Forks: 12
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Regression Planning Networks
![preview](assets/rpn.png)A reference implementation of the [Regression Planning Networks](https://arxiv.org/abs/1909.13072).
This repo also includes the simulated environments
used in the paper: GridWorld and Kitchen3D. GridWorld is built on [gym-minigrid](https://github.com/maximecb/gym-minigrid).
Kitchen3D is simulated with [PyBullet](https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet). Most of the PyBullet utilities are adapted from Caelan Garrett's
[ss-pybullet](https://github.com/caelan/ss-pybullet). The [Appendix](assets/RPN_Appendix.pdf) of the original paper is also included here for reference.To cite the code, use bibtex:
```
@inproceedings{xu2019rpn,
title={Regression Planning Networks},
author={Xu, Danfei and Martín-Martín, Roberto and Huang, De-An and Zhu, Yuke and Savarese, Silvio and Fei-Fei, Li},
booktitle={Thirty-third Conference on Neural Information Processing Systems (NeurIPS)},
year={2019}
}
```![preview](assets/preview.gif)
## Installation and Setup
Requirement: Python >= 3.6Note: The code DOES NOT work with Python 3.5
```
$ git clone https://github.com/danfeiX/rpn.git
$ git submodule update --init --recursive
$ pip install -r requirements.txt
$ cd rpn
$ mkdir checkpoints
$ mkdir data
```## Kitchen3D
### Dataset
To reproduce the main experiments, first create a demonstration dataset with three ingredients and two dishes
(`I=3`, `D=2`).
```
$ python create_dataset_pb.py --problem pb_cook_meal_3i_2d_3m_iter \
--dataset data/pb_cook_3i_2d_3m_10_s0.group \
--num_episodes 10 --num_tasks -1 --seed 0 \
--teleport --num_chunks 100 --num_workers 10
```
The entire process takes around 3 hours with 10 works (`--num_workers 10`) on a machine with i7-7700K CPU @ 4.20GHz.
The dataset will be written to `data/pb_cook_3i_2d_3m_10_s0.group`.
To create a smaller validation set, run:
```
$ python create_dataset_pb.py --problem pb_cook_meal_3i_2d_3m_iter \
--dataset data/pb_cook_3i_2d_3m_1_s1.group \
--num_episodes 1 --num_tasks -1 --seed 1 \
--teleport --num_chunks 10 --num_workers 10
```
### Train
To train our full RPN model, run:
```
$ python train.py --dataset data/pb_cook_3i_2d_3m_10_s0.group \
--testset data/pb_cook_3i_2d_3m_1_s1.group \
--exp rpn \
--run experiment \
--batch_size 128 \
--eval_batch_size 128 \
--eval_freq 1 --save_freq 1 \
--num_epoch 10 --config configs/pbv_rpn.json \
--num_workers 1
```Checkpoints will be written to `checkpoints/rpn/experiment/` each epoch. Both text and tensorboard event will be written
to `checkpoints/rpn/experiment/log/`.#### Evaluation
To evaluate a trained model on the Kitchen3D task with `I=6` and `D=3`, run:```
$ python eval_pb.py --restore_path checkpoints/rpn/experiment/ckpt_ep6.pt \
--problem pb_cook_meal_6i_3d_6m_shuffle \
--num_eval 1000 --seed 1 \
--display
```Aside: Our naming convention for the cooking tasks is `pb_cook_meal_i_d_m_`, where `` is the
number of ingredients involved, `` is the number of dishes to cook, `` is the maximum number of ingredients that
can be placed on a plate (usually set to be equal to ``), and `` is whether to shuffle the list of
all possible tasks under the current task specification.