Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/danheck/mcmcprecision
Precision for discrete parameters in transdimensional MCMC
https://github.com/danheck/mcmcprecision
Last synced: 27 days ago
JSON representation
Precision for discrete parameters in transdimensional MCMC
- Host: GitHub
- URL: https://github.com/danheck/mcmcprecision
- Owner: danheck
- Created: 2017-01-24T17:18:54.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2022-11-11T00:22:49.000Z (almost 2 years ago)
- Last Synced: 2023-11-20T16:22:34.031Z (12 months ago)
- Language: R
- Size: 460 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/MCMCprecision)](https://cran.r-project.org/package=MCMCprecision)
[![Workflow](https://github.com/danheck/MCMCprecision/actions/workflows/check-standard.yaml/badge.svg)](https://github.com/danheck/MCMCprecision/actions/workflows/check-standard.yaml)
[![Licence](https://img.shields.io/badge/licence-GPL--2-green.svg)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.html)
[![monthly downloads](https://cranlogs.r-pkg.org/badges/MCMCprecision)](https://cranlogs.r-pkg.org/badges/MCMCprecision)
[![total downloads](https://cranlogs.r-pkg.org/badges/grand-total/MCMCprecision)](https://cranlogs.r-pkg.org/badges/grand-total/MCMCprecision)# MCMCprecision: Precision for discrete parameters in transdimensional MCMC
The R package `MCMCprecision` estimates the precision of the posterior model
probabilities in transdimensional Markov chain Monte Carlo methods (e.g.,
reversible jump MCMC or product-space MCMC). This is useful for applications of
transdimensional MCMC such as model selection, mixtures with varying numbers of
components, change-point detection, capture-recapture models, phylogenetic trees,
variable selection, and for discrete parameters in MCMC output in general.To install `MCMCprecision` from GitHub, paste the following code to R
(dependencies need to be installed manually):```r
### Dependencies:
# install.packages(c("combinat", "devtools","RcppProgress","RcppArmadillo", "RcppEigen"))library(devtools)
install_github("danheck/MCMCprecision")
```To compile C++ code, Windows requires [Rtools](https://cran.r-project.org/bin/windows/Rtools/)
and Mac [Xcode Command Line Tools](https://www.maketecheasier.com/install-command-line-tools-without-xcode/), respectively. Moreover, on Mac, it might be necessary to install the library `gfortran`
manually by typing the following into the console ([required to compile the package `RcppArmadillo`](http://thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error/)):```
curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /
```## Reference
* Heck, D. W., Overstall, A. M., Gronau, Q. F., & Wagenmakers, E.-J. (2017). Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models. *Statistics & Computing*. [doi:10.1007/s11222-018-9828-0](https://dx.doi.org/10.1007/s11222-018-9828-0)
[arxiv:1703.10364](https://arxiv.org/abs/1703.10364)