Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/danheck/mcmcprecision

Precision for discrete parameters in transdimensional MCMC
https://github.com/danheck/mcmcprecision

Last synced: 27 days ago
JSON representation

Precision for discrete parameters in transdimensional MCMC

Awesome Lists containing this project

README

        

[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/MCMCprecision)](https://cran.r-project.org/package=MCMCprecision)
[![Workflow](https://github.com/danheck/MCMCprecision/actions/workflows/check-standard.yaml/badge.svg)](https://github.com/danheck/MCMCprecision/actions/workflows/check-standard.yaml)
[![Licence](https://img.shields.io/badge/licence-GPL--2-green.svg)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.html)
[![monthly downloads](https://cranlogs.r-pkg.org/badges/MCMCprecision)](https://cranlogs.r-pkg.org/badges/MCMCprecision)
[![total downloads](https://cranlogs.r-pkg.org/badges/grand-total/MCMCprecision)](https://cranlogs.r-pkg.org/badges/grand-total/MCMCprecision)

# MCMCprecision: Precision for discrete parameters in transdimensional MCMC

The R package `MCMCprecision` estimates the precision of the posterior model
probabilities in transdimensional Markov chain Monte Carlo methods (e.g.,
reversible jump MCMC or product-space MCMC). This is useful for applications of
transdimensional MCMC such as model selection, mixtures with varying numbers of
components, change-point detection, capture-recapture models, phylogenetic trees,
variable selection, and for discrete parameters in MCMC output in general.

To install `MCMCprecision` from GitHub, paste the following code to R
(dependencies need to be installed manually):

```r
### Dependencies:
# install.packages(c("combinat", "devtools","RcppProgress","RcppArmadillo", "RcppEigen"))

library(devtools)
install_github("danheck/MCMCprecision")
```

To compile C++ code, Windows requires [Rtools](https://cran.r-project.org/bin/windows/Rtools/)
and Mac [Xcode Command Line Tools](https://www.maketecheasier.com/install-command-line-tools-without-xcode/), respectively. Moreover, on Mac, it might be necessary to install the library `gfortran`
manually by typing the following into the console ([required to compile the package `RcppArmadillo`](http://thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error/)):

```
curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /
```

## Reference

* Heck, D. W., Overstall, A. M., Gronau, Q. F., & Wagenmakers, E.-J. (2017). Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models. *Statistics & Computing*. [doi:10.1007/s11222-018-9828-0](https://dx.doi.org/10.1007/s11222-018-9828-0)
[arxiv:1703.10364](https://arxiv.org/abs/1703.10364)