Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/daniel-furman/lwmcmc
MCMC parameter space sampling via Metropolis-Hastings
https://github.com/daniel-furman/lwmcmc
bayesian-inference mcmc metropolis-hastings-algorithm numpy parameter-space-sampling
Last synced: 4 days ago
JSON representation
MCMC parameter space sampling via Metropolis-Hastings
- Host: GitHub
- URL: https://github.com/daniel-furman/lwmcmc
- Owner: daniel-furman
- License: mit
- Created: 2021-02-03T19:53:48.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-08-15T19:02:40.000Z (over 3 years ago)
- Last Synced: 2024-10-12T11:08:25.171Z (about 1 month ago)
- Topics: bayesian-inference, mcmc, metropolis-hastings-algorithm, numpy, parameter-space-sampling
- Language: Python
- Homepage: https://libraries.io/pypi/lwMCMC
- Size: 7.43 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![Build Status](https://travis-ci.com/daniel-furman/lwMCMC.svg?branch=main)](https://travis-ci.com/daniel-furman/lwMCMC)
## lwMCMC: lightweight Markov Chain Monte Carlo
---
`from lwMCMC import MCMC`
Parameter space sampling with MCMC. See Bayesian inference with the MCMC class below, for an Experimental Geophysics regression.
Posterior distributions | MCMC model fit
:---------------------------------:|:----------------------------------------:
![](examples/data/grid_ice.png) | ![](examples/data/ice_scatter.png)* The grid entries reveal the 1-dimensional posterior distributions of our parameters after setting our prior beliefs, as well as the pairwise projections with one and two sigma error contours.
* With the slope parameters's 1.8 +- 0.225 prior, the Bayesian inferred slope is 1.70 +- 0.17.
---
### Package Layout
* [LICENSE](https://github.com/daniel-furman/lwMCMC/blob/main/LICENSE) - the MIT license, which applies to this package
* README.md - the README file, which you are now reading
* [requirements.txt](https://github.com/daniel-furman/lwMCMC/blob/main/requirements.txt) - prerequisites to install this package, used by pip
* [setup.py](https://github.com/daniel-furman/lwMCMC/blob/main/setup.py) - installer script
* [docs](https://github.com/daniel-furman/lwMCMC/tree/main/docs)/ - contains documentation on package installation and usage
* [examples](https://github.com/daniel-furman/lwMCMC/tree/main/examples)/ - use cases for Bayesian Modeling
* [lwMCMC](https://github.com/daniel-furman/lwMCMC/tree/main/lwMCMC)/ - the library code itself
* [tests](https://github.com/daniel-furman/lwMCMC/tree/main/test)/ - unit tests