Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/danielhavir/capsule-network
PyTorch implementation of the paper Dynamic Routing Between Capsules by Sara Sabour, Nicholas Frosst and Geoffrey Hinton
https://github.com/danielhavir/capsule-network
Last synced: 3 months ago
JSON representation
PyTorch implementation of the paper Dynamic Routing Between Capsules by Sara Sabour, Nicholas Frosst and Geoffrey Hinton
- Host: GitHub
- URL: https://github.com/danielhavir/capsule-network
- Owner: danielhavir
- License: mit
- Created: 2018-03-02T22:22:35.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-06T17:22:32.000Z (over 6 years ago)
- Last Synced: 2024-08-01T08:11:41.654Z (6 months ago)
- Language: Python
- Size: 48.8 KB
- Stars: 165
- Watchers: 7
- Forks: 23
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-CapsNet - danielhavir/capsule-network
- awesome-capsule-networks - danielhavir/capsule-network
README
# Capsule Network #
[![License](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](LICENSE)#### PyTorch implementation of the following paper:
* [_Dynamic Routing Between Capsules_](https://arxiv.org/abs/1710.09829) by Sara Sabour, Nicholas Frosst and Geoffrey Hinton### Official implemenation
* [Official implementation](https://github.com/Sarasra/models/tree/master/research/capsules) (TensorFlow) by Sara Sabour### Visual represenation
![capsules_visual_representation](https://cdn-images-1.medium.com/max/1600/1*UPaxEd1A3N5ceckB85RIRg.jpeg)
> Image source: _Mike Ross_, [A Visual Representation of Capsule Network Computations](https://medium.com/@mike_ross/a-visual-representation-of-capsule-network-computations-83767d79e737)### Run the experiment
* For details, run `python main.py --help`### Example of reconstructed vs. original images
![reconstructed](reconstructed.png)______
### Requirements:
* PyTorch (http://www.pytorch.org)
* NumPy (http://www.numpy.org/)
* GPU### Default hyper-parameters (similar to the paper):
* Per-GPU `batch_size` = 128
* Initial `learning_rate` = 0.001
* Exponential `lr_decay` = 0.96
* Number of routing iteration (`num_routing`) = 3#### Loss function hyper-parameters (see [loss.py](loss.py)):
* Lambda for Margin Loss = 0.5
* Scaling factor for reconstruction loss = 0.0005### GPU Speed benchmarks:
(with above mentioned hyper-parameters)
* Single GeForce GTX 1080Ti - 35.6s per epoch
* Two GeForce GTX 1080Ti - 35.8s per epoch (twice the batch size -> half the iteration)