Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/danmadeira/algoritmos-estatistica-python
Demonstração de Algoritmos de Estatística em Python
https://github.com/danmadeira/algoritmos-estatistica-python
algorithms data-analysis data-science python statistics
Last synced: 4 days ago
JSON representation
Demonstração de Algoritmos de Estatística em Python
- Host: GitHub
- URL: https://github.com/danmadeira/algoritmos-estatistica-python
- Owner: danmadeira
- License: gpl-3.0
- Created: 2022-04-03T14:50:38.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-04-03T14:52:06.000Z (over 2 years ago)
- Last Synced: 2023-10-20T07:51:33.080Z (about 1 year ago)
- Topics: algorithms, data-analysis, data-science, python, statistics
- Language: Jupyter Notebook
- Homepage:
- Size: 125 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
## Demonstração de Algoritmos de Estatística em Python
Esta é uma demonstração de funções que implementam alguns cálculos estatísticos. Os algoritmos que representam as fórmulas estatísticas estão escritos em uma estrutura simples e semelhante a aplicação pura das respectivas fórmulas, para deixar o código o mais limpo possível, e assim, didático.
Até o momento, estas são algumas das fórmulas estatísticas que estão presentes:
* Média Aritmética
* Média Aritmética Ponderada
* Média Geométrica
* Média Geométrica Ponderada
* Média Harmônica
* Média Harmônica Ponderada
* Média Quadrática
* Média Quadrática Ponderada
* Média Cúbica
* Média Cúbica Ponderada
* Média Desarmônica
* Média Desarmônica Ponderada
* Mediana
* Moda
* Desvio Absoluto Médio
* Desvio Absoluto Mediano
* Variância Populacional
* Desvio Padrão Populacional
* Variância Amostral
* Desvio Padrão Amostral
* Coeficiente de Variação
* Covariância Populacional
* Covariância Amostral
* Coeficiente de Correlação Populacional de Pearson
* Coeficiente de Correlação Amostral de Pearson
* Somatório dos Quadrados
* Somatório dos Produtos XY
* Z-score Populacional
* Z-score Amostral
* Três Desvios
* Amplitude
* Assimetria
* Curtose
* Quartis
* Desagrupar dados
* Agrupar dadosObs.: As funções possuem versões para dados agrupados ou não agrupados e para dados amostrais ou populacionais. Ao final, há uma demonstração da execução das funções e, em alguns casos, há um comparativo com as funções disponíveis no Python.
### Referências:
- AGRESTI, A.; FRANKLIN, C.; KLINGENBERG, B. *Statistics: The Art and Science of Learning from Data*, 4th Edition. Pearson Education Limited, 2018.
- ANDERSON, D. R.; SWEENEY, D. J.; WILLIAMS, T. A. *Essentials of Statistics for Business and Economics*, 5th Edition. Thomson South-Western, 2009.
- ANDERSON, D. R.; SWEENEY, D. J.; WILLIAMS, T. A. *Statistics for Business and Economics*, 11th Edition. South-Western, Cengage Learning, 2011.
- BLUMAN, A. G. *Elementary Statistics: A Step By Step Approach*, 10th Edition. McGraw-Hill, 2018.
- BONAMENTE, M. *Statistics and Analysis of Scientific Data*, 2nd Edition. Springer Science Business Media, 2017.
- BOSLAUGH, S.; WATTERS, P. A. *Statistics in a Nutshell*, 1st Edition. O'Reilly, 2008.
- BRUCE, P.; BRUCE, A.; GEDECK, P. *Practical Statistics for Data Scientists*, 2nd Edition. O'Reilly Media, 2020.
- DANGETI, P. *Statistics for Machine Learning*. Packt Publishing, 2017.
- DEITEL, P.; DEITEL, H *Intro to Python: for Computer Science and Data Science*, Global Edition. Pearson Education Limited, 2022.
- DEVORE, J. L. *Probability and Statistics for Engineering and the Sciences*, 9th Edition. Cengage Learning, 2016.
- EMC Education Services. *Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data*. John Wiley & Sons, 2015.
- FORSYTH, D. *Probability and Statistics for Computer Science*. Springer International Publishing, 2018.
- FREEDMAN, D.; PISANI, R.; PURVES. R. *Statistics*, 4th Edition. W. W. Norton & Company, 2007.
- FREUND, R. J.; WILSON, W. J. *Statistical Methods*, 2nd Edition. Academic Press, 2003.
- GRUS, J. *Data Science from Scratch: First Principles with Python*, Second Edition. O'Reilly Media, 2019.
- HEUMANN, C.; SCHOMAKER, M.; SHALABH. *Introduction to Statistics and Data Analysis*. Springer International Publishing Switzerland, 2016.
- HOGG, R. V.; MCKEAN, J. W.; CRAIG, A. T. *Introduction to Mathematical Statistics*, 8th Edition. Pearson Education, 2019.
- HUBER, P. J.; RONCHETTI, E. M. *Robust Statistics*, Second Edition. John Wiley & Sons, 2009.
- JOHNSON, R.; KUBY, P. *Elementary Statistics*, 11th edition. Brooks/Cole, Cengage Learning, 2012.
- KOTZ, S.; READ, C. B.; BALAKRISHNAN, N.; VIDAKOVIC, B. *Encyclopedia of Statistical Sciences*, 2nd Edition, Vol 1-16. John Wiley & Sons, 2005.
- MARTIN, B. R. *Statistics for Physical Sciences, An Introduction*, 1st Edition. Elsevier, 2012.
- MENDENHALL, W.; BEAVER, R. J.; BEAVER, B. M. *Introduction to Probability and Statistics*, 13th Edition. Brooks/Cole, Cengage Learning, 2009.
- MENDENHALL, W. M.; SINCICH, T. L. *Statistics for Engineering and the Sciences*, 6th Edition. CRC Press, Taylor & Francis Group, 2016.
- MONTGOMERY, D. C.; RUNGER, G. C. *Applied Statistics and Probability for Engineers*, 3rd Edition. John Wiley & Sons, 2003.
- NELLI, F. *Python Data Analytics: With Pandas, NumPy, and Matplotlib*, Second Edition. Apress Media LLC, 2018.
- NISBET, R.; MINER, G.; YALE, K. *Handbook of Statistical Analysis and Data Mining Applications*, 2nd Edition. Academic Press, Elsevier, 2018.
- OZDEMIR, S. *Principles of Data Science: Learn the techniques and math you need to start making sense of your data*. Packt Publishing, 2016.
- PECK, R.; DEVORE, J. L. *Statistics: The Exploration and Analysis of Data*, 7th Edition. Brooks/Cole, Cengage Learning, 2012.
- PECK, R.; OLSEN, C.; DEVORE, J. L. *Introduction to Statistics and Data Analysis*, 4th Edition. Brooks/Cole, Cengage Learning, 2012.
- PROVOST, F.; FAWCETT, T. *Data Science for Business*, 1st Edition. O'Reilly Media, 2013.
- RASCH, D.; SCHOTT, D. *Mathematical Statistics*. John Wiley & Sons, 2018.
- RUPPERT, D.; MATTESON, D. S. *Statistics and Data Analysis for Financial Engineering with R examples*, Second Edition. Springer Texts in Statistics. Springer, 2015.
- SALKIND, N. J. *Encyclopedia of Measurement and Statistics*, Vol 1-3. SAGE Publications, 2007.
- SKIENA, S. S. *The Data Science Design Manual*. Texts in Computer Science. Springer International Publishing, 2017.
- SPIEGEL, M. R.; STEPHENS, L. J. *Schaum's Outline of Statistics*, 6th Edition. McGraw-Hill Education, 2018.
- WALPOLE, R. E.; MYERS, R. H.; MYERS, S. L.; YE, K. *Probability & Statistics for Engineers & Scientists*, 9th Edition, Global Edition. Pearson Education Limited, 2016.
- WEIERS, R. M. *Introduction to Business Statistics*, 6th Edition. Thomson South-Western, 2008.
- WITTE, R. S.; WITTE, J. S. *Statistics*, 11th Edition. John Wiley & Sons, 2017.