Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dansolombrino/kindergarten-vq-vae
Improving disentanglement properties in off-the-shelf Transformer models
https://github.com/dansolombrino/kindergarten-vq-vae
autoencoders deep-learning deep-neural-networks natural-language-processing nlp transformers
Last synced: 8 days ago
JSON representation
Improving disentanglement properties in off-the-shelf Transformer models
- Host: GitHub
- URL: https://github.com/dansolombrino/kindergarten-vq-vae
- Owner: dansolombrino
- Created: 2024-01-15T08:44:23.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-03-17T18:46:41.000Z (11 months ago)
- Last Synced: 2024-12-14T09:34:49.201Z (2 months ago)
- Topics: autoencoders, deep-learning, deep-neural-networks, natural-language-processing, nlp, transformers
- Language: Python
- Homepage:
- Size: 4.92 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Kindergarten-VQ-VAE
## Getting started
- Create a Python virtual environment using the preferred environment manager
- Install dependencies listed in `requirements.txt`## Folder structure
This is the project folder structure, highlighting the goal of each directory
- `Kindergarten-VQ-VAE` $\to$ project root directory
- `analyses` $\to$ utility scripts to perform project analyses
- `unsupervised_vq_disentanglement` $\to$ Analysis 1: does unsupervised Vector Quantization disentangle the 9 dSentences generative factors?
- `results` $\to$ data gathered from Analysis 1, grouped by run ID
- `common` $\to$ common utility scripts, classes and constants- `datasets` $\to$ dataset files
- `dSentences` $\to$ dSentences dataset files
- `data` $\to$ data-related files (e.g. pre-processing, PyTorch DataSet implementation)
- `dSentences` $\to$ dSentences data-related files- `models` $\to$ PyTorch models
- `bagon` $\to$ Attempt 1 $\to$ Pre-trained BERT Encoder, fine-tuned BERT Decoder LM head
- `bagon` $\to$ Attempt 2 $\to$ Pre-trained BERT Encoder, fine-tuned BERT Decoder LM head, VQ from scratch## How to train
### Bagon model
- Activate the virtual environment for this project
- `cd` into project root folder
- Change hyperparameters in `models/bagon/config.py`, if desired
- `PYTHONPATH=. python3 models/bagon/main.py` from the project root folder. Alternatively:
- `export PYTHONPATH=.` once when you first start the terminal session you want to run the model in
- `python3 models/bagon/main.py`