Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/danyi1212/dans-log-formatter

Extensible log formatter for Python logging library
https://github.com/danyi1212/dans-log-formatter

celery datadog django fastapi flask logging python python-logging

Last synced: 30 days ago
JSON representation

Extensible log formatter for Python logging library

Awesome Lists containing this project

README

        

Dan's Log Formatter



Extensible, reusable, awesome log formatter for Python




Test


Coverage


Package version


Supported Python versions

---

You too are tiered of rewriting log handling for each project?
Here's my simple, extensible formatter, designed so we never have to write it again.

This log formatter ships with commonly used features, like JSON serialization, attribute injection, error handling and more.

Adding log attributes beside the message is made simple, like contextual data, runtime information, request information, basicly whatever you may need.
Those attribute providers can easily be shared between your services, streamlining the development experince between your services.

## Features

- **Extensible** - Add attributes to logs with ease, including simple error handling
- **Reusable** - Share your attribute providers across projects
- **Contextual** - Automatically adds useful context to logs
- **Out-of-the-box** - Include common providers for HTTP data, runtime, and more

My log record's default attributes are mostly compatible
with [DataDog's Standard Attributes](https://docs.datadoghq.com/logs/log_configuration/attributes_naming_convention/#standard-attributes).

#### Integrations

- **Django** - Automatically adds request context
- **FastAPI** - Automatically adds request context (including Starlette support)
- **Flask** - Automatically adds request context
- **Celery** - Automatically adds task context
- **orjson** - Uses orSON for serialization
- **ujson** - Uses uJSON for serialization

## Usage

Install my package using pip:

```shell
pip install dans-log-formatter
```

Then set up your logging configuration:

```python
import logging.config

from dans_log_formatter.providers.context import ContextProvider

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"providers": [
ContextProvider(),
], # optional
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"formatter": "json",
}
},
"root": {
"handlers": ["console"],
"level": "INFO",
},
})
```

Then, use it in your project:

```python
import logging

logger = logging.getLogger(__name__)

def main():
logger.info("Hello, world!")

if __name__ == "__main__":
main()

# STDOUT: {'timestamp': 1704060000.0, 'status': 'INFO', 'message': 'hello world!', 'location': 'my_module-main#4', 'file': '/Users/danyi1212/projects/my-project/my_module.py'}
```

## Providers

Providers add attributes to logs. You can use the built-in providers or create your own.

### Context Provider

Inject context into logs using decorator or context manager.

```python
from dans_log_formatter import JsonLogFormatter
from dans_log_formatter.providers.context import ContextProvider

formatter = JsonLogFormatter(providers=[ContextProvider()])
```

Then use the `inject_log_context()` as a context manager

```python
import logging
from dans_log_formatter.providers.context import inject_log_context

logger = logging.getLogger(__name__)

with inject_log_context({"user_id": 123}):
logger.info("Hello, world!")

# STDOUT: {'timestamp': 1704060000.0, 'status': 'INFO', 'message': 'hello world!', 'user_id': 123, ...}
```

Alternatively, use it as `@inject_log_context()` decorator

```python
import logging
from dans_log_formatter.providers.context import inject_log_context

logger = logging.getLogger(__name__)

@inject_log_context({"custom_context": "value"})
def my_function():
logger.info("Hello, world!")

# STDOUT: {'timestamp': 1704060000.0, 'status': 'INFO', 'message': 'hello world!', 'custom_context': 'value', ...}
```

### Extra Provider

Add `ExtraProvider()` from `dans_log_formatter.providers.extra`, then use the `extra={}` argument in your log calls

```python
import logging

logger = logging.getLogger(__name__)
logger.info("Hello, world!", extra={"user_id": 123})
# STDOUT: {'timestamp': 1704060000.0, 'status': 'INFO', 'message': 'hello world!', 'user_id': 123, ...}
```

### Runtime Provider

Add `RuntimeProvider()` from `dans_log_formatter.providers.runtime` to add runtime information to logs.

#### Attributes

* `process` - Current process name and ID (e.g. `main (12345)`)
* `thread` - Current thread name and ID (e.g. `MainThread (12345)`)
* `task` - Current asyncio task name (e.g. `my_corrutine`)

### Create your own provider

```python
from logging import LogRecord
from typing import Any

from dans_log_formatter.providers.abstract import AbstractProvider

class MyProvider(AbstractProvider):
"""Add 'my_attribute' to all logs"""

def get_attributes(self, record: LogRecord) -> dict[str, Any]:
return {"my_attribute": "some value"}
```

You can also use the abstract context provider to add data from contextvars

```python
from contextvars import ContextVar
import logging
from typing import Any
from dataclasses import dataclass

from dans_log_formatter.providers.abstract_context import AbstractContextProvider

@dataclass
class User:
id: int
name: str

current_user_context: ContextVar[User | None] = ContextVar("current_user_context", default=None)

class MyContextProvider(AbstractContextProvider):
"""Add user.id and user.name context to logs"""

def __init__(self):
super().__init__(current_user_context) # Pass the context

def get_context_attributes(self, record: logging.LogRecord, current_user: User) -> dict[str, Any]:
return {"user.id": current_user.id, "user.name": current_user.name}

logger = logging.getLogger(__name__)

token = current_user_context.set(User(id=123, name="John Doe"))
logger.info("Hello, world!")
current_user_context.reset(token)
# STDOUT: {'timestamp': 1704060000.0, 'status': 'INFO', 'message': 'Hello, world!', 'user.id': 123, 'user.name': 'John Doe', ...}
```

## Integrations

### Django Request Provider

Install using 'pip install dans-log-formatter[django]'

Add the 'LogContextMiddleware' to your Django middlewares at the very beginning.

```python
# settings.py
MIDDLEWARE = [
"dans_log_formatter.contrib.django.middleware.LogContextMiddleware",
...
]
```

Then, add `DjangoRequestProvider()` to your formatter.

```python
# settings.py
from dans_log_formatter.contrib.django.provider import DjangoRequestProvider

LOGGING = {
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"providers": [
DjangoRequestProvider(),
],
}
},
# ...
}
```

#### Attributes

* `resource` - View route (e.g. `POST /api/users//delete`)
* `http.url` - Full URL (e.g. `https://example.com/api/users/123/delete`)
* `http.method` - HTTP method (e.g. `POST`)
* `http.referrer` - `Referrer` header (e.g. `https://example.com/previous-page`)
* `http.user_agent` - `useragent` header
* `http.remote_addr` - `X-Forwarded-For` or `REMOTE_ADDR` header
* `user.id` - User ID
* `user.name` - User's username
* `user.email` - User email

> Note: The `user` attributes available only inside the `django.contrib.auth.middleware.AuthenticationMiddleware`
> middleware.

### FastAPI Request Provider

Install using 'pip install dans-log-formatter[fastapi]'

Add the 'LogContextMiddleware' to your FastAPI app.

```python
from fastapi import FastAPI
from dans_log_formatter.contrib.fastapi.middleware import LogContextMiddleware

app = FastAPI()
app.add_middleware(LogContextMiddleware)
```

Then, add `FastAPIRequestProvider()` to your formatter.

```python
import logging.config
from dans_log_formatter.contrib.fastapi.provider import FastAPIRequestProvider

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"providers": [
FastAPIRequestProvider(),
],
}
},
# ...
})
```

#### Attributes

* `resource` - Route path (e.g. `POST /api/users/{user_id}/delete`)
* `http.url` - Full URL (e.g. `https://example.com/api/users/123/delete`)
* `http.method` - HTTP method (e.g. `POST`)
* `http.referrer` - `Referrer` header (e.g. `https://example.com/previous-page`)
* `http.user_agent` - `useragent` header
* `http.remote_addr` - `X-Forwarded-For` header or the `request.client.host` attribute

### Flask Request Provider

Install using 'pip install dans-log-formatter[flask]'

Add the 'FlastRequestProvider' to your formatter, and its magic!

```python
import logging.config
from dans_log_formatter.contrib.flask.provider import FlaskRequestProvider

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"providers": [
FlaskRequestProvider(),
],
}
},
# ...
})
```

#### Attributes

* `resource` - URL path (e.g. `POST /api/users/123/delete`)
* `http.url` - Full URL (e.g. `https://example.com/api/users/123/delete`)
* `http.method` - HTTP method (e.g. `POST`)
* `http.referrer` - `Referrer` header (e.g. `https://example.com/previous-page`)
* `http.user_agent` - `useragent` header
* `http.remote_addr` - `request.remote_addr` attribute

### Celery Task Provider

Install using 'pip install dans-log-formatter[celery]'

Add the 'CeleryTaskProvider' to your formatter, and its magic!

```python
import logging.config
from dans_log_formatter.contrib.celery.provider import CeleryTaskProvider

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"providers": [
CeleryTaskProvider(), # optional include_args=True
],
}
},
# ...
})
```

#### Attributes

* `resource` - Task name (e.g. `my_project.tasks.my_task`)
* `task.id` - Task ID
* `task.retries` - Number of retries
* `task.root_id` - Root task ID
* `task.parent_id` - Parent task ID
* `task.origin` - Producer host name
* `task.delivery_info` - Delivery info (
e.g. `{"exchange": "my_exchange", "routing_key": "my_routing_key", "queue": "my_queue"}`)
* `task.worker` - Worker hostname
* `task.args` - Task arguments (if `include_args=True`)
* `task.kwargs` - Task keyword arguments (if `include_args=True`)

> Warning: Including task arguments can expose sensitive information, and may result in very large logs.

### ujson Formatter

Install using 'pip install dans-log-formatter[ujson]'

Uses `ujson` for JSON serialization of the log records.

```python
import logging.config

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.contrib.ujson.UJsonLogFormatter",
"providers": [], # optional
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"formatter": "json",
}
},
"root": {
"handlers": ["console"],
"level": "INFO",
},
})
```

### orjson Serializer Formatter

Install using 'pip install dans-log-formatter[orjson]'

Uses `orjson` for JSON serialization of the log records.

```python
import logging.config

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.contrib.orjson.OrJsonLogFormatter",
"providers": [], # optional
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"formatter": "json",
}
},
"root": {
"handlers": ["console"],
"level": "INFO",
},
})
```

## Available Formatters

By default, all formatter includes the following attributes:

* `timestamp` - Unix timestamp (same as the `record.created` attribute, or the value returned
by `time.time()`. [See the docs](https://docs.python.org/3/library/logging.html#logrecord-attributes))
* `status` - Log level name (e.g. `INFO`, `ERROR`, `CRITICAL`)
* `message` - Log message
* `location` - Location of the log call (e.g. `my_module-my_func#4`)
* `file` - File path of the log call (e.g. `/Users/danyi1212/projects/my-project/my_module.py`)
* `error` - Exception message and traceback (when `exec_info=True`)
* `stack_info` - Stack trace (when `stack_info=True`)
* `formatter_errors` - Errors from the formatter or providers (when an error occurs)

By default, the `message` value is truncated to 64k characters, and the `error`, 'stack_info', and `formatter_errors`
values are truncated to 128k characters.

You can override the default truncation using:
```python
import logging.config

logging.config.dictConfig({
"version": 1,
"formatters": {
"json": {
"()": "dans_log_formatter.JsonLogFormatter",
"message_size_limit": 1024, # Set None to unlimited
"stack_size_limit": 1024, # Set None to unlimited
}
},
# ...
})
```

### JsonLogFormatter

Format log records as JSON using `json.dumps()`.

### TextLogFormatter

Format log records as human-readable text using `logging.Formatter` ([See the docs](https://docs.python.org/3/library/logging.html#formatter-objects)).

All attributes are available to use in the format string.

The `timestamp` attribute is formatted using the `datefmt` like in the `logging.Formatter`.

```python
import logging.config

from dans_log_formatter.providers.context import ContextProvider, inject_log_context

logging.config.dictConfig({
"version": 1,
"formatters": {
"text": {
"()": "dans_log_formatter.TextLogFormatter",
"providers": [ContextProvider()],
"fmt": "{timestamp} {status} | {user_id} - {message}",
"datefmt": "%H:%M:%S",
"style": "{"
}
},
# ...
})

logger = logging.getLogger(__name__)

with inject_log_context({"user_id": 123}):
logger.info("Hello, world!")

# STDOUT: 12:00:42 INFO | 123 - Hello, world!
```

## Extending your own formatter

You can extend the `JsonLogFormatter` to modify the default attributes, add new ones, use other log record serializer or anything else.

```python
import socket
from logging import LogRecord
import xml.etree.ElementTree as ET

from dans_log_formatter import JsonLogFormatter

class MyCustomFormatter(JsonLogFormatter):
root_tag = "log"

def format(self, record: LogRecord) -> str:
# Serialize to XML instead of JSON
return self.attributes_to_xml(self.get_attributes(record))

def attributes_to_xml(self, attributes: dict[str, str]) -> str:
root = ET.Element(self.root_tag)
for key, value in attributes.items():
element = ET.SubElement(root, key)
element.text = value
return ET.tostring(root, encoding="unicode")

def format_status(self, record: LogRecord) -> int:
return record.levelno # Use the level number instead of the level name

def format_location(self, record: LogRecord) -> str:
return f"{record.module}-{record.funcName}" # Use only the module and function name, without the line number

def format_exception(self, record: LogRecord) -> str:
return f"{record.exc_info[0].__name__}: {record.exc_info[1]}" # Use only the exception name and message

def get_attributes(self, record: LogRecord) -> dict:
attributes = super().get_attributes(record)
attributes["hostname"] = socket.gethostname() # Add an extra hostname default attribute
return attributes
```

> Note: Creating a custom `HostnameProvider` is a better way to add the hostname attribute.

### Error handling

When an error occurs in the formatter or providers, the `formatter_errors` attribute is added to the log record.

Silent errors can be added to the `formatter_errors` attribute using the `record_error()` method.

```python
from dans_log_formatter.providers.abstract import AbstractProvider

class MyProvider(AbstractProvider):
def get_attributes(self, record: LogRecord) -> dict[str, Any]:
self.record_error("Something went wrong") # Add an error to the formatter_errors attribute
return {'my_attribute': 'some value'}
```

Exception traceback context is automatically added to the recorded error or caught exceptions described in the `formatter_errors` attribute.

## Contributing

Before contributing, please read the [contributing guidelines](CONTRIBUTING.md) for guidance on how to get started.

### License

This project is licensed under the [MIT License](LICENSE).

# Happy logging!