Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/darcyai/darcyai
Darcy AI Engine is a Python library for building AI apps
https://github.com/darcyai/darcyai
ai ai-pipeline computer-vision edge edge-computing edgeai iot open-source opencv python raspberry-pi
Last synced: 2 months ago
JSON representation
Darcy AI Engine is a Python library for building AI apps
- Host: GitHub
- URL: https://github.com/darcyai/darcyai
- Owner: darcyai
- License: apache-2.0
- Created: 2022-02-15T00:25:51.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-09-05T23:01:12.000Z (over 1 year ago)
- Last Synced: 2024-09-17T00:24:21.855Z (4 months ago)
- Topics: ai, ai-pipeline, computer-vision, edge, edge-computing, edgeai, iot, open-source, opencv, python, raspberry-pi
- Language: Python
- Homepage: https://docs.darcy.ai
- Size: 53.3 MB
- Stars: 7
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Darcy AI Engine
![AI Engine Pipeline](https://github.com/darcyai/darcyai/raw/main/.assets/pipeline-example-visual%402x-100.jpg)
Darcy AI Engine is a Python library that makes building AI apps as easy as building any other type
of app. AI Engine exposes high-level constructs ([`InputStream`](https://darcyai.github.io/darcyai/input-streams/inputstream/),
[`Perceptor`](https://darcyai.github.io/darcyai/perceptors/perceptor/), `Callback`,
[`OutputStream`](https://darcyai.github.io/darcyai/output-streams/outputstream/))
that you assemble in a `Pipeline` with a few lines of Python.To get started, see the [Build Guide](https://docs.darcy.ai/docs/guides/build/), look
at the [examples](https://github.com/darcyai/darcyai/tree/main/src/examples), and consult
the [Python reference docs](https://darcyai.github.io/darcyai/).## Example
This code (from [basic.py](https://github.com/darcyai/darcyai/tree/main/src/examples/basic_pipeline/basic.py)) shows how easy it
is to create a minimal AI Engine pipeline:```python
#Add the DarcyAI components that we need, particularly the InputStream, OutputStream, Pipeline, and PerceptorMock
from darcyai.tests.perceptor_mock import PerceptorMock
from darcyai.pipeline import Pipeline
from sample_input_stream import SampleInputStream
from sample_output_stream import SampleOutputStream#Define a class to hold all of our operations
class SingleStreamDemo():
def __init__(self):
#Create an input stream and an output stream that we can use in our demo
ping = SampleInputStream()
output_stream = SampleOutputStream()#Give our class a pipeline property and instantiate it with a Darcy AI pipeline
self.__pipeline = Pipeline(input_stream=ping,
input_stream_error_handler_callback=self.__input_stream_error_handler_callback,
universal_rest_api=True,
rest_api_base_path="/pipeline",
rest_api_port=8080)#Add our output stream to the pipeline
self.__pipeline.add_output_stream("output", self.__output_stream_callback, output_stream)#Create a mock perceptor and add it to the pipeline
p1 = PerceptorMock()
self.__pipeline.add_perceptor("p1", p1, accelerator_idx=0, input_callback=self.__perceptor_input_callback)#Define a "run" method that just calls "run" on the pipeline
def run(self):
self.__pipeline.run()#Define an input callback for the mock perceptor that just sends the data onward with no manipulation
def __perceptor_input_callback(self, input_data, pom, config):
return input_data#Define an output stream callback that does not manipulate the data
def __output_stream_callback(self, pom, input_data):
pass#Define an input stream error handler callback that just continues onward
def __input_stream_error_handler_callback(self, exception):
pass#In the main thread, start the application by instantiating our demo class and calling "run"
if __name__ == "__main__":
single_stream = SingleStreamDemo()
single_stream.run()
```## Issues, Contributing, Discussion
If you discover issues with AI Engine, view the [issues](https://github.com/darcyai/darcyai/issues),
or create a new one. You can also submit a [Pull Request](https://github.com/darcyai/darcyai/pulls),
or join the [discussions](https://github.com/darcyai/darcyai/discussions).