Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dasmith/stanford-corenlp-python

Python wrapper for Stanford CoreNLP tools v3.4.1
https://github.com/dasmith/stanford-corenlp-python

Last synced: about 2 months ago
JSON representation

Python wrapper for Stanford CoreNLP tools v3.4.1

Awesome Lists containing this project

README

        

# Python interface to Stanford Core NLP tools v3.4.1

This is a Python wrapper for Stanford University's NLP group's Java-based [CoreNLP tools](http://nlp.stanford.edu/software/corenlp.shtml). It can either be imported as a module or run as a JSON-RPC server. Because it uses many large trained models (requiring 3GB RAM on 64-bit machines and usually a few minutes loading time), most applications will probably want to run it as a server.

* Python interface to Stanford CoreNLP tools: tagging, phrase-structure parsing, dependency parsing, [named-entity recognition](http://en.wikipedia.org/wiki/Named-entity_recognition), and [coreference resolution](http://en.wikipedia.org/wiki/Coreference).
* Runs an JSON-RPC server that wraps the Java server and outputs JSON.
* Outputs parse trees which can be used by [nltk](http://nltk.googlecode.com/svn/trunk/doc/howto/tree.html).

It depends on [pexpect](http://www.noah.org/wiki/pexpect) and includes and uses code from [jsonrpc](http://www.simple-is-better.org/rpc/) and [python-progressbar](http://code.google.com/p/python-progressbar/).

It runs the Stanford CoreNLP jar in a separate process, communicates with the java process using its command-line interface, and makes assumptions about the output of the parser in order to parse it into a Python dict object and transfer it using JSON. The parser will break if the output changes significantly, but it has been tested on **Core NLP tools version 3.4.1** released 2014-08-27.

## Download and Usage

To use this program you must [download](http://nlp.stanford.edu/software/corenlp.shtml#Download) and unpack the compressed file containing Stanford's CoreNLP package. By default, `corenlp.py` looks for the Stanford Core NLP folder as a subdirectory of where the script is being run. In other words:

sudo pip install pexpect unidecode
git clone git://github.com/dasmith/stanford-corenlp-python.git
cd stanford-corenlp-python
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip
unzip stanford-corenlp-full-2014-08-27.zip

Then launch the server:

python corenlp.py

Optionally, you can specify a host or port:

python corenlp.py -H 0.0.0.0 -p 3456

That will run a public JSON-RPC server on port 3456.

Assuming you are running on port 8080, the code in `client.py` shows an example parse:

import jsonrpc
from simplejson import loads
server = jsonrpc.ServerProxy(jsonrpc.JsonRpc20(),
jsonrpc.TransportTcpIp(addr=("127.0.0.1", 8080)))

result = loads(server.parse("Hello world. It is so beautiful"))
print "Result", result

That returns a dictionary containing the keys `sentences` and `coref`. The key `sentences` contains a list of dictionaries for each sentence, which contain `parsetree`, `text`, `tuples` containing the dependencies, and `words`, containing information about parts of speech, recognized named-entities, etc:

{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
u'text': u'Hello world!',
u'tuples': [[u'dep', u'world', u'Hello'],
[u'root', u'ROOT', u'world']],
u'words': [[u'Hello',
{u'CharacterOffsetBegin': u'0',
u'CharacterOffsetEnd': u'5',
u'Lemma': u'hello',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'UH'}],
[u'world',
{u'CharacterOffsetBegin': u'6',
u'CharacterOffsetEnd': u'11',
u'Lemma': u'world',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'NN'}],
[u'!',
{u'CharacterOffsetBegin': u'11',
u'CharacterOffsetEnd': u'12',
u'Lemma': u'!',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]},
{u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
u'text': u'It is so beautiful.',
u'tuples': [[u'nsubj', u'beautiful', u'It'],
[u'cop', u'beautiful', u'is'],
[u'advmod', u'beautiful', u'so'],
[u'root', u'ROOT', u'beautiful']],
u'words': [[u'It',
{u'CharacterOffsetBegin': u'14',
u'CharacterOffsetEnd': u'16',
u'Lemma': u'it',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'PRP'}],
[u'is',
{u'CharacterOffsetBegin': u'17',
u'CharacterOffsetEnd': u'19',
u'Lemma': u'be',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'VBZ'}],
[u'so',
{u'CharacterOffsetBegin': u'20',
u'CharacterOffsetEnd': u'22',
u'Lemma': u'so',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'RB'}],
[u'beautiful',
{u'CharacterOffsetBegin': u'23',
u'CharacterOffsetEnd': u'32',
u'Lemma': u'beautiful',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'JJ'}],
[u'.',
{u'CharacterOffsetBegin': u'32',
u'CharacterOffsetEnd': u'33',
u'Lemma': u'.',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}

To use it in a regular script (useful for debugging), load the module instead:

from corenlp import *
corenlp = StanfordCoreNLP() # wait a few minutes...
corenlp.parse("Parse this sentence.")

The server, `StanfordCoreNLP()`, takes an optional argument `corenlp_path` which specifies the path to the jar files. The default value is `StanfordCoreNLP(corenlp_path="./stanford-corenlp-full-2014-08-27/")`.

## Coreference Resolution

The library supports [coreference resolution](http://en.wikipedia.org/wiki/Coreference), which means pronouns can be "dereferenced." If an entry in the `coref` list is, `[u'Hello world', 0, 1, 0, 2]`, the numbers mean:

* 0 = The reference appears in the 0th sentence (e.g. "Hello world")
* 1 = The 2nd token, "world", is the [headword](http://en.wikipedia.org/wiki/Head_%28linguistics%29) of that sentence
* 0 = 'Hello world' begins at the 0th token in the sentence
* 2 = 'Hello world' ends before the 2nd token in the sentence.

## Questions

**Stanford CoreNLP tools require a large amount of free memory**. Java 5+ uses about 50% more RAM on 64-bit machines than 32-bit machines. 32-bit machine users can lower the memory requirements by changing `-Xmx3g` to `-Xmx2g` or even less.
If pexpect timesout while loading models, check to make sure you have enough memory and can run the server alone without your kernel killing the java process:

java -cp stanford-corenlp-2014-08-27.jar:stanford-corenlp-3.4.1-models.jar:xom.jar:joda-time.jar -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP -props default.properties

You can reach me, Dustin Smith, by sending a message on GitHub or through email (contact information is available [on my webpage](http://web.media.mit.edu/~dustin)).

# License & Contributors

This is free and open source software and has benefited from the contribution and feedback of others. Like Stanford's CoreNLP tools, it is covered under the [GNU General Public License v2 +](http://www.gnu.org/licenses/gpl-2.0.html), which in short means that modifications to this program must maintain the same free and open source distribution policy.

I gratefully welcome bug fixes and new features. If you have forked this repository, please submit a [pull request](https://help.github.com/articles/using-pull-requests/) so others can benefit from your contributions. This project has already benefited from contributions from these members of the open source community:

* [Emilio Monti](https://github.com/emilmont)
* [Justin Cheng](https://github.com/jcccf)
* Abhaya Agarwal

*Thank you!*

## Related Projects

Maintainers of the Core NLP library at Stanford keep an [updated list of wrappers and extensions](http://nlp.stanford.edu/software/corenlp.shtml#Extensions). See Brendan O'Connor's [stanford_corenlp_pywrapper](https://github.com/brendano/stanford_corenlp_pywrapper) for a different approach more suited to batch processing.