Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/data-datum/learning_R
List of resources for learning R
https://github.com/data-datum/learning_R
books data-manipulation data-visualization datatable dplyr functions ggplot2 purrr r r-programming r-spatial reproducible-research rmarkdown rstudio shiny shiny-apps strings strings-manipulation tidyr webinars
Last synced: about 2 months ago
JSON representation
List of resources for learning R
- Host: GitHub
- URL: https://github.com/data-datum/learning_R
- Owner: data-datum
- Created: 2018-09-24T23:52:45.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2020-07-25T03:33:42.000Z (over 4 years ago)
- Last Synced: 2024-08-13T07:04:29.100Z (6 months ago)
- Topics: books, data-manipulation, data-visualization, datatable, dplyr, functions, ggplot2, purrr, r, r-programming, r-spatial, reproducible-research, rmarkdown, rstudio, shiny, shiny-apps, strings, strings-manipulation, tidyr, webinars
- Homepage:
- Size: 185 KB
- Stars: 37
- Watchers: 2
- Forks: 13
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- jimsghstars - data-datum/learning_R - List of resources for learning R (Others)
README
# Learning R - Resources
_Last Update_ : 25-July/2020
## Cursos
* Listas de cursos https://www.learnr4free.com/en/index.html## R Programming
* CRAN Contributed Documentation https://cran.r-project.org/
* What they forgot to teach you about R _Jenny Bryan_ https://rstats.wtf/### Books
* R Programming for Data Science _Roger D. Peng_ 2016-12-22 http://bit.ly/2AbQRhd
* R for Data Science _Garrett Grolemund & Hadley Wickham_ http://bit.ly/2AaFWEw
* Efficient R programming _Colin Gillespie & Robin Lovelace_ http://bit.ly/2AaGKcw
* Hands-On Programming with R _Garrett Grolemund_ http://bit.ly/2QYJRJZ
* Advanced R _Hadley Wickham_ http://bit.ly/2AapVhT
* Wikibook R Programming https://en.wikibooks.org/wiki/R_Programming
* Learning statistics with R: A tutorial for psychology students and other beginners _Danielle Navarro_ http://bit.ly/2DaYoig
* The Tidynomicon A Brief Introduction to R for Python Programmers _Greg Wilson_ http://bit.ly/2IEh4t8
* Rad _R for academics_ http://bit.ly/2UufM8b#### _Español_
* El arte de programar en R _Julio Sergio Santana & Efraín Mateos Farfán_ http://bit.ly/2N2Y1Y8
* R para Principiantes _Juan Bosco Mendoza Vega_ http://bit.ly/2Zg0I3M## Rstudio [webinars](https://rstudio.com/resources/webinars/)
## Data Manipulation
### tidyr and dplyr Packages
* Tidy evaluation is one of the major feature of the latest versions of dplyr and tidyr [Video] http://bit.ly/2AbXJLs
* Tidy eval: Programming with dplyr, tidyr, and ggplot2 _Hadley Wickham_ [Video] http://bit.ly/2QR07N5
* Data wrangling with R and RStudio [Video] http://bit.ly/2AaocZX slides: http://bit.ly/2QSr7vS
* Wrangling data in the Tidyverse [Video] (useR! 2018 Conf) [Part 1] http://bit.ly/2SEHDBc [Part 2] http://bit.ly/2SK9EHt
* dplyr tutorials _Suzan Baert_ http://bit.ly/2AbSHi2
* Getting more out of dplyr SatRday Amsterdam 2018 slides _Suzan Baert_ http://bit.ly/2QXf28I
* dplyr 10 tips and tricks _Suzan Baert (RoCur WeAreRLadies)_ http://bit.ly/2AaWb4k
* STAT 545 Course https://stat545.com/tidy-data.html
* Let the Data Flow: Pipelines in R with dplyr and magrittr http://bit.ly/2AaVDvz
* Data Processing with dplyr & tidyr (Rpubs) http://bit.ly/2Aah7Zd
* Introducción a tidyr: Datos ordenados en R (Rpubs) [español] http://bit.ly/2AaWV9T
* dplyr Rstudio cheatsheet http://bit.ly/2IEwRcM
* tidylog _Tidylog provides feedback about basic dplyr operations_ http://bit.ly/2MJJUvq#### Joins
* Vignettes for Joins - http://bit.ly/2Zhdsaj
* Join Functions _Jenny Bryan_ http://bit.ly/2AbUZ0C
* Joining Data in R with dplyr (Rpubs) http://bit.ly/2ZjTwnm
* Gif for differrent types of Joins http://bit.ly/2ZixS2L### data.table Package
* Intro to data.table Package http://bit.ly/2Aa6Yf3
* Wrangling with data.table http://bit.ly/2QQfLIy
* R studio cheatsheet (data.table) http://bit.ly/2IEwRcM
* Data crunching with data.table (Rpubs) http://bit.ly/2AbNCGz
* Best packages for data manipulation in R (dplyr & data.table) http://bit.ly/2AenZox
* A data.table and dplyr tour http://bit.ly/2IDlIYd### String manipulation and stringr package
* String Manipulation in R with stringr (Rpubs) http://bit.ly/2SzLyiR
* Regular Expression in R _Gloria Li and Jenny Bryan_ http://bit.ly/2SD74Dg## Data Visualization
### ggplot2 Package
* R Graph Gallery http://bit.ly/2UmD3ZN
* DataCarpentry resources: http://bit.ly/2Aaiwz2
* Visualización estática e interactiva con ggplot2 y plotly [español] http://bit.ly/2xI2dqH
* Data Visualization in R http://bit.ly/2AaKzy9
* R graphics with ggplot2 workshop notes http://bit.ly/2AavgG4
* Data visualization using ggplot2 http://bit.ly/2Aal7ZT
* ggplot2 package by Hadley Wickham (Rpubs) http://bit.ly/2AaaeqN
* 7 Visualizations You Should Learn in R http://bit.ly/2NwhCBf
* How to make fancy graphs with ggplot2 (Medium post) http://bit.ly/2PTV51W
* Designing ggplots making clear figures that communicate bit.ly/ggplots
* Drawing anything with ggplot2 https://github.com/thomasp85/ggplot2_workshop#### Books
* Data Visualization A practical introduction _Kieran Healy_ http://bit.ly/2AaF9n2
* Data Visualization with R. _Rob Kabacoff_ http://bit.ly/2A9pLaj
* ggplot2: Elegant Graphics for Data Analysis _Hadley Wickham_ https://ggplot2-book.org/#### Visualization Courses
* CS 448B Visualization. Stanford CS course on data visualization techniques (Fall 2018) http://bit.ly/2IDzfyW## Modeling
### Broom
* Broom vignette http://bit.ly/2M42z5y
* Convenient analysis with broom - Alex Hayes - http://bit.ly/2ZdV7e4
* broom: a package for tidying statistical models into data frames http://bit.ly/2Wi0FBZ
### Tidymodels
* A gentle introduction to tidymodels http://bit.ly/2G176QI
* Tutorial on tidymodels for Machine Learning https://bit.ly/37iyQwC### H2o.ai
* Auto Machine Learning with H2o.ai #LatinR2019 _Erin Ledell_ http://bit.ly/35nDEQ7
* Youtube Channel http://bit.ly/2ogLiep### Data Modeling
* Hands-on Machine Learning with R http://bit.ly/2IBxTEM
* Feature Engineering and Selection: A Practical Approach for Predictive Models http://bit.ly/2IEf2Jw## Shiny Web Application
* Rstudio Resources http://bit.ly/2QOovPq
* Introduction to Shiny [video] http://bit.ly/2Aat9BQ
* Testing Shiny applications with Shinytest - Shiny developers now have tools for automated testing of complete applications [video] http://bit.ly/2AauJUq
* Understanding PCA using Shiny and Stack Overflow data _Julia Silge_ [video] http://bit.ly/2QLmG5K
* Developing and deploying large scale Shiny applications _Herman Sontrop_ [video] http://bit.ly/2QT8rMx
* Understanding Shiny Modules [video] http://bit.ly/2AaTuzS
* Interactive Graphics with Shiny [video] http://bit.ly/2Aau45h
* Interactive web-based data visualization with R, plotly, and shiny https://plotly-r.com/
* Javascript for Shiny Users https://github.com/rstudio-conf-2020/js-for-shiny
* Interactive web applications with Shiny - meetup material https://bit.ly/2B0Eacq
* Production-grade Shiny Apps with golem - rstudio::conf2019 talk https://bit.ly/30G685J
* Building Big Shiny Apps — A Workflow – [1/2](https://bit.ly/32Hr0MN) [2/2](https://bit.ly/3jvlxP8)
* Building a Shiny App as a Package https://bit.ly/30EgTpb
* Testing shiny Apss https://speakerdeck.com/colinfay/erum-2020-testing-shiny-why-what-and-how
* A gRadual introduction to Shiny. https://laderast.github.io/gradual_shiny/index.html#### Books
* Mastering Shiny _Hadley Wickham_ http://bit.ly/2z89f9l
* Interactive web-based data visualization with R, plotly, and shiny http://bit.ly/2IBuR3m
* Engineering Production-Grade Shiny Apps https://engineering-shiny.org/## R Markdown
* R Markdown Gallery http://bit.ly/2QPHxoI
* R Markdown articles http://bit.ly/2A9LfEe
* R Markdown Rstudio lessons http://bit.ly/2A9Ln6G
* R Markdown and knitr make it easy to intermingle code and text to generate compelling reports and presentations that are never out of date. [video] http://bit.ly/2A9MH9E
* Beyond static reports with R Markdown [video] http://bit.ly/2Ac2jtd
* Introducing Notebooks with R Markdown [video] http://bit.ly/2AaYPXH
* RMarkdown Tips and Tricks - An Introduction to RMarkdown http://bit.ly/2P1NjaA
* RMarkdwon Workshop http://bit.ly/2P3kYkt
* Reproducible Reporting http://bit.ly/2A9MH9E
* 15 Tips on Making Better Use of R Markdown _Yihui Xie_ https://slides.yihui.org/2019-dahshu-rmarkdown#1### Books
* R Markdown: The Definitive Guide _Yihui Xie, J. J. Allaire, Garrett Grolemund_ http://bit.ly/2QNTISX
* Introduction to RMarkdown http://bit.ly/2P59GMo
* RMarkdown for Scientists http://bit.ly/2T2Uca8## Bookdown & Blogdown
* Introducing bookdown [video] http://bit.ly/2AbArpc
* Introducing blogdown, a new R package to make blogs and websites with R Markdown [video] http://bit.ly/2AamVSt
* A week of blogdown for RStudio's summer 2019 interns _Alison Hill_ https://summer-of-blogdown.netlify.com/
### Books
* bookdown: Authoring Books and Technical Documents with R Markdown _Yihui Xie_ http://bit.ly/2QLTZWq
* blogdown: Creating Websites with R Markdown _Yihui Xie, Amber Thomas, Alison Presmanes Hill_ http://bit.ly/2QPjCpm## R code Best Practices
* R Best Practices: R you writing the R way! http://bit.ly/2P2TkE3
* R Code – Best practices http://bit.ly/2P13Mfq
* Best Practices for Writing R Code [The Carpentries] http://bit.ly/2P3485h## R Package Development
* Write your first R Package (STAT 545 Course) _Jenny Bryan_ http://bit.ly/2OjiBs2
* You can make a package in 20 minutes _Jim Hester_ [Video] http://bit.ly/2QR3K5D
* What makes a great R package? _Joseph Rickert_ [Video] http://bit.ly/2QLS9Vw
* How to develop good R packages (for open science) _Maëlle Salmon_ http://bit.ly/2QTXgmP
* Writing an R package from scratch (Not so Standard deviations blogpost) _Hilary Parker_ http://bit.ly/2QOlONO
* R Package Development Pictorial http://bit.ly/2QP5tbW
* Developing Packages with RStudio http://bit.ly/2QOav8v
* Writing an R package from scratch http://bit.ly/2QTWZAj
* Reproducible Research: Writing an R Package. http://bit.ly/2AarXi0
* Advanced R Course (Chapter 6: R Packages) _Florian Privé_ http://bit.ly/2QT53kN
* rOpenSci Packages: Development, Maintenance, and Peer Review http://bit.ly/2P3k7QN
* R Package Development Tutorial #LatinR2019 _Hadley Wickham_ https://github.com/hadley/pkg-dev
* Make an R Package - the easy way - _Matt Dray_ http://bit.ly/2PCEhQh
* Usethis package development workflow http://bit.ly/2pzuoIg### Books
* R Packages _Hadley Wickham_ http://r-pkgs.had.co.nz/## purrr Package - Functional Programming
* Happy R Users Purrr – Tutorial _Charlotte Wickham_ [Video] http://bit.ly/2AakkIv
* Purrr tutorial - _Charlotte Wickham_ http://bit.ly/2AaDCNO
* Purrr tutorial - _Jenny Bryan_ http://bit.ly/2QSVoLC
* Package CRAN Documentation http://bit.ly/2zbuSFz
* Purrr as part of the tidyverse http://bit.ly/2z6gFcO
* The joy of Functional Programming _Hadley Wickham_ http://bit.ly/2IC2qCk
* Purrr - tips and tricks https://bit.ly/2AWODF6
* Two examples of iteration with purrr - Class for the R-Studio certification https://bit.ly/3dzWKoK## How to write functions in R.
* Jenny Bryan's STAT 545 Course http://bit.ly/2QGCtnc
* Jenny Bryan's Talk in RLadies Bs As _Writing R functions for fun and profit_ http://bit.ly/2xMqhsu## R-Spatial
* Spatial Data Analysis and Modeling with R http://rspatial.org/
* Spatial modelling using ‘raster’ package (useR! Conf 2018) - [Part 1] http://bit.ly/2SJ9PTB [Part 2] http://bit.ly/2SIJgOr
* Spatial Data Science _Edzer Pebesma, Roger Bivand_ https://keen-swartz-3146c4.netlify.com/## Reproducible Research
* Best Practices for Scientific Computing _Greg Wilson … Paul Wilson_ | *PLoS Biology 2014* http://bit.ly/2SHZqrs
* Good enough practices in scientific computing _Greg Wilson ... Tracy Teal_| *_PlOS Computational Biology 2017_* http://bit.ly/2zhSSXW
* Reproducibility in Science - ROpenSci - http://bit.ly/2P18DgA
* The drake R Package User Manual http://bit.ly/2P4n9nK
* rrtools: Tools for Writing Reproducible Research in R - http://bit.ly/2zhMekA
* Use of an R package to facilitate reproducible research - http://bit.ly/2zhP8G0## Metaprogramming - TidyEval
* Tidy evaluation _Lionel Henry & Hadley Wickham_ http://bit.ly/2P5oRFy
* Lazy evaluation _Jenny Bryan_ [video Rstudio conf 2019] http://bit.ly/2P82pvn [material] http://bit.ly/2PgphbY## Tutorials from different topics
* The coding club http://bit.ly/2SJzTy7
* The R class _R programming for biologists_ http://bit.ly/2SD71HA
* R for NFL analysis http://bit.ly/2ICmqoo## R Courses with Tidyverse
* Tidy Data Science Workshop (Jun-2019) http://bit.ly/2ID1mhV
* RaukR-2019 http://rstd.io/raukr
* UC Business Analytics R Programming Guide http://uc-r.github.io/
* STAT 545A/547M: Exploratory Data Analysis - Jenny Bryan - http://bit.ly/31fsz0t
* Data Science in a Box - Mine Çetinkaya-Rundel - http://bit.ly/2PcydPU
* R for learning and teaching R _List of resources_ http://bit.ly/2PaIqwc
* BIMS8382 Spring 2018 https://bims8382.github.io/2018/
* Course materials for Applied Machine Learning course in 2019 in London https://github.com/topepo/aml-london-2019