Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/databrickslabs/tempo
API for manipulating time series on top of Apache Spark: lagged time values, rolling statistics (mean, avg, sum, count, etc), AS OF joins, downsampling, and interpolation
https://github.com/databrickslabs/tempo
data-analysis data-science pandas python scala time-series timeseries timeseries-analysis timeseries-data
Last synced: about 1 month ago
JSON representation
API for manipulating time series on top of Apache Spark: lagged time values, rolling statistics (mean, avg, sum, count, etc), AS OF joins, downsampling, and interpolation
- Host: GitHub
- URL: https://github.com/databrickslabs/tempo
- Owner: databrickslabs
- License: other
- Created: 2020-07-14T15:43:11.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-10-29T22:06:45.000Z (about 1 month ago)
- Last Synced: 2024-10-30T00:39:15.632Z (about 1 month ago)
- Topics: data-analysis, data-science, pandas, python, scala, time-series, timeseries, timeseries-analysis, timeseries-data
- Language: Jupyter Notebook
- Homepage: https://pypi.org/project/dbl-tempo
- Size: 4.52 MB
- Stars: 307
- Watchers: 24
- Forks: 52
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-sciml - databrickslabs/tempo: API for manipulating time series on top of Apache Spark: lagged time values, rolling statistics (mean, avg, sum, count, etc), AS OF joins, downsampling, and interpolation
README
# tempo - Time Series Utilities for Data Teams Using Databricks
## Project Description
Welcome to Tempo: timeseries manipulation for Spark.
This project builds upon the capabilities of [PySpark](https://spark.apache.org/docs/latest/api/python/index.html) to provide
a suite of abstractions and functions that make operations on timeseries data easier and highly scalable.*NOTE* that the Scala version of Tempo is now deprecated and no longer in development.
[![image](https://github.com/databrickslabs/tempo/workflows/build/badge.svg)](https://github.com/databrickslabs/tempo/actions?query=workflow%3Abuild)
[![codecov](https://codecov.io/gh/databrickslabs/tempo/branch/master/graph/badge.svg)](https://codecov.io/gh/databrickslabs/tempo)
[![Downloads](https://pepy.tech/badge/dbl-tempo/month)](https://pepy.tech/project/dbl-tempo)
[![PyPI version](https://badge.fury.io/py/dbl-tempo.svg)](https://badge.fury.io/py/dbl-tempo)
[![docs](https://github.com/databrickslabs/tempo/actions/workflows/docs.yml/badge.svg)](https://databrickslabs.github.io/tempo/)
[![lines of code](https://tokei.rs/b1/github/databrickslabs/tempo)]([https://codecov.io/github/databrickslabs/tempo](https://github.com/databrickslabs/tempo))## [Tempo Project Documentation](https://databrickslabs.github.io/tempo/)