Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/datake/AdaGCN

Official Implementation of AdaGCN (ICLR 2021)
https://github.com/datake/AdaGCN

Last synced: 25 days ago
JSON representation

Official Implementation of AdaGCN (ICLR 2021)

Awesome Lists containing this project

README

        

# Official Pytorch Implementation of "AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models" (ICLR 2021)

Please refer to [openreview](https://openreview.net/forum?id=QkRbdiiEjM) (ICLR 2021) to look into the details of our paper.

![Alt text](https://github.com/datake/AdaGCN/raw/main/AdaGCN.png)

## Enviromment

```
python3.6
cuda11.0
torch1.7.1
```

## Run the code (Datasets: citeseer, cora_ml, pubmed and ms_academic)

#### Baseline: GCN

```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model GCN --dropout 0.5 --reg 5e-4
```

#### Baseline: APPNP or PPNP

```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model APPNP --dropout 0.5 --early 1 --patience 300 --max 500 --reg 5e-3
```

#### AdaGCN on Four datasets:

```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model AdaGCN --layers 15 --hid_AdaGCN 5000 --dropout 0.0 --weight_decay 1e-3 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset cora_ml --niter 5 --nseed 20 --model AdaGCN --layers 12 --hid_AdaGCN 5000 --dropout 0.0 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset pubmed --niter 5 --nseed 20 --model AdaGCN --layers 20 --hid_AdaGCN 5000 --dropout 0.2 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset ms_academic --niter 5 --nseed 20 --model AdaGCN --layers 5 --hid_AdaGCN 3000 --dropout 0.2 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
```

**Results:**

| Dataset | Average Accuracy | Std |
| ------------- | ------------- | ------------- |
| Citeseer | 76.68 | 0.20 |
| Cora-ML | 85.97 | 0.20 |
| PubMed | 79.95 | 0.21 |
| MS Academic | 93.17 | 0.07 |

## Acknowledgement

Our code is directly adapted from PPNP paper **Predict then Propagate: Graph Neural Networks meet Personalized PageRank** (ICLR 2019) github: https://github.com/klicperajo/ppnp.

## Contact

Please refer to [email protected] in case you have any questions.

## Cite
Please cite our paper if you use the model or this code in your own work:
```
@inproceedings{sun2020adagcn,
title={AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models},
author={Sun, Ke and Zhu, Zhanxing and Lin, Zhouchen},
booktitle={International Conference on Learning Representations},
year={2020}
}
```