Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/datake/AdaGCN
Official Implementation of AdaGCN (ICLR 2021)
https://github.com/datake/AdaGCN
Last synced: 25 days ago
JSON representation
Official Implementation of AdaGCN (ICLR 2021)
- Host: GitHub
- URL: https://github.com/datake/AdaGCN
- Owner: datake
- Created: 2021-01-23T06:45:07.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-01-03T17:06:54.000Z (almost 3 years ago)
- Last Synced: 2024-08-03T18:14:13.101Z (4 months ago)
- Language: Python
- Homepage:
- Size: 8.21 MB
- Stars: 59
- Watchers: 4
- Forks: 12
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-gradient-boosting-papers - [Code
- awesome-gradient-boosting-papers - [Code
- awesome-gradient-boosting-papers - [Code
README
# Official Pytorch Implementation of "AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models" (ICLR 2021)
Please refer to [openreview](https://openreview.net/forum?id=QkRbdiiEjM) (ICLR 2021) to look into the details of our paper.
![Alt text](https://github.com/datake/AdaGCN/raw/main/AdaGCN.png)
## Enviromment
```
python3.6
cuda11.0
torch1.7.1
```## Run the code (Datasets: citeseer, cora_ml, pubmed and ms_academic)
#### Baseline: GCN
```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model GCN --dropout 0.5 --reg 5e-4
```#### Baseline: APPNP or PPNP
```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model APPNP --dropout 0.5 --early 1 --patience 300 --max 500 --reg 5e-3
```#### AdaGCN on Four datasets:
```
python main.py --trainsize 20 --dataset citeseer --niter 5 --nseed 20 --model AdaGCN --layers 15 --hid_AdaGCN 5000 --dropout 0.0 --weight_decay 1e-3 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset cora_ml --niter 5 --nseed 20 --model AdaGCN --layers 12 --hid_AdaGCN 5000 --dropout 0.0 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset pubmed --niter 5 --nseed 20 --model AdaGCN --layers 20 --hid_AdaGCN 5000 --dropout 0.2 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
python main.py --trainsize 20 --dataset ms_academic --niter 5 --nseed 20 --model AdaGCN --layers 5 --hid_AdaGCN 3000 --dropout 0.2 --weight_decay 1e-4 --early 1 --patience 300 --max 500 --reg 5e-3
```**Results:**
| Dataset | Average Accuracy | Std |
| ------------- | ------------- | ------------- |
| Citeseer | 76.68 | 0.20 |
| Cora-ML | 85.97 | 0.20 |
| PubMed | 79.95 | 0.21 |
| MS Academic | 93.17 | 0.07 |## Acknowledgement
Our code is directly adapted from PPNP paper **Predict then Propagate: Graph Neural Networks meet Personalized PageRank** (ICLR 2019) github: https://github.com/klicperajo/ppnp.
## Contact
Please refer to [email protected] in case you have any questions.
## Cite
Please cite our paper if you use the model or this code in your own work:
```
@inproceedings{sun2020adagcn,
title={AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models},
author={Sun, Ke and Zhu, Zhanxing and Lin, Zhouchen},
booktitle={International Conference on Learning Representations},
year={2020}
}
```