An open API service indexing awesome lists of open source software.

https://github.com/datalayer/jupyter-earth-mcp-server

πŸͺ 🌎 Jupyter Earth MCP Server
https://github.com/datalayer/jupyter-earth-mcp-server

earth esa jupyter mcp mcp-server nasa

Last synced: 4 months ago
JSON representation

πŸͺ 🌎 Jupyter Earth MCP Server

Awesome Lists containing this project

README

          

[![Datalayer](https://assets.datalayer.tech/datalayer-25.svg)](https://datalayer.io)

[![Become a Sponsor](https://img.shields.io/static/v1?label=Become%20a%20Sponsor&message=%E2%9D%A4&logo=GitHub&style=flat&color=1ABC9C)](https://github.com/sponsors/datalayer)

# 🌎 ✨ Jupyter Earth MCP Server

[![Github Actions Status](https://github.com/datalayer/jupyter-earth-mcp-server/workflows/Build/badge.svg)](https://github.com/datalayer/jupyter-earth-mcp-server/actions/workflows/build.yml)
[![PyPI - Version](https://img.shields.io/pypi/v/jupyter-earth-mcp-server)](https://pypi.org/project/jupyter-earth-mcp-server)

🌍 Jupyter Earth MCP Server is a [Model Context Protocol](https://modelcontextprotocol.io) (MCP) server implementation that provides a set of tools for πŸ—ΊοΈ Geospatial analysis in πŸ““ Jupyter notebooks.

The following demo uses the [Earthdata MCP server](https://github.com/datalayer/earthdata-mcp-server) to search for datasets and data granules on NASA Earthdata, this MCP server to download the data in Jupyter and the [jupyter-mcp-server](https://github.com/datalayer/jupyter-mcp-server) to run further analysis.



Analyzing Sea Level Rise with AI-Powered Geospatial Tools and Jupyter - Watch Video






## Start JupyterLab

Make sure you have the following installed. The collaboration package is needed as the modifications made on the notebook can be seen thanks to [Jupyter Real Time Collaboration](https://jupyterlab.readthedocs.io/en/stable/user/rtc.html).

```bash
pip install jupyterlab==4.4.1 jupyter-collaboration==4.0.2 ipykernel
pip uninstall -y pycrdt datalayer_pycrdt
pip install datalayer_pycrdt==0.12.17
```

Then, start JupyterLab with the following command.

```bash
jupyter lab --port 8888 --IdentityProvider.token MY_TOKEN --ip 0.0.0.0
```

You can also run `make jupyterlab`.

> [!NOTE]
>
> The `--ip` is set to `0.0.0.0` to allow the MCP server running in a Docker container to access your local JupyterLab.

## Use with Claude Desktop

Claude Desktop can be downloaded [from this page](https://claude.ai/download) for macOS and Windows.

For Linux, we had success using this [UNOFFICIAL build script based on nix](https://github.com/k3d3/claude-desktop-linux-flake)

```bash
# ⚠️ UNOFFICIAL
# You can also run `make claude-linux`
NIXPKGS_ALLOW_UNFREE=1 nix run github:k3d3/claude-desktop-linux-flake \
--impure \
--extra-experimental-features flakes \
--extra-experimental-features nix-command
```

To use this with Claude Desktop, add the following to your `claude_desktop_config.json` (read more on the [MCP documentation website](https://modelcontextprotocol.io/quickstart/user#2-add-the-filesystem-mcp-server)).

> [!IMPORTANT]
>
> Ensure the port of the `SERVER_URL`and `TOKEN` match those used in the `jupyter lab` command.
>
> The `NOTEBOOK_PATH` should be relative to the directory where JupyterLab was started.

### Claude Configuration on macOS and Windows

```json
{
"mcpServers": {
"jupyter-earth": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"datalayer/jupyter-earth-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://host.docker.internal:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
```

### Claude Configuration on Linux

```bash
CLAUDE_CONFIG=${HOME}/.config/Claude/claude_desktop_config.json
cat < $CLAUDE_CONFIG
{
"mcpServers": {
"jupyter-earth": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"--network=host",
"datalayer/jupyter-earth-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://localhost:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
EOF
cat $CLAUDE_CONFIG
```

## Components

### Tools

The server currently offers 1 tool:

1. `download_earth_data_granules`

- Add a code cell in a Jupyter notebook to download Earth data granules from NASA Earth Data.
- Input:
- `folder_name`(string): Local folder name to save the data.
- `short_name`(string): Short name of the Earth dataset to download.
- `count`(int): Number of data granules to download.
- `temporal` (tuple): (Optional) Temporal range in the format (date_from, date_to).
- `bounding_box` (tuple): (Optional) Bounding box in the format (lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat).
- Returns: Cell output.

### Prompts

1. `download_analyze_global_sea_level`
- To ask for downloading and analyzing global sea level data in Jupyter.
- Returns: Prompt correctly formatted.

## Building

You can build the Docker image it from source.

```bash
make build-docker
```