Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/datamade/data-analysis-guidelines
📒 Analyzing Data, the DataMade Way
https://github.com/datamade/data-analysis-guidelines
Last synced: 5 days ago
JSON representation
📒 Analyzing Data, the DataMade Way
- Host: GitHub
- URL: https://github.com/datamade/data-analysis-guidelines
- Owner: datamade
- License: mit
- Archived: true
- Created: 2017-08-14T15:40:53.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2021-03-11T20:56:35.000Z (over 3 years ago)
- Last Synced: 2024-08-01T12:36:30.191Z (3 months ago)
- Language: Makefile
- Size: 90.8 KB
- Stars: 36
- Watchers: 8
- Forks: 4
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-starred - datamade/data-analysis-guidelines - 📒 Analyzing Data, the DataMade Way (others)
README
# Analyzing Data, the DataMade Way
**⚠️ Deprecation warning**: *This documentation no longer represents DataMade's current best practices for data analysis. For contemporary guidance on data analysis, refer to the [`how-to`](https://github.com/datamade/how-to/tree/master/data-analysis) repo.*
You've [_extracted_ and _transformed_ the data](https://github.com/datamade/data-making-guidelines).
Now it's time to _load_ (analyze) it. Here, you'll find the principles that
inform DataMade's approach to data analysis, as well as the tools and
organizational practices that make it possible.## Principles
DataMade's approach to data analysis combines [our principles for making data](https://github.com/datamade/data-making-guidelines#basic-principles)
with the basic principles of [literate programming](https://en.wikipedia.org/wiki/Literate_programming).Namely, data analysis should:
1. be **reproducible** with one command.
2. be conducted using **standard tools**.
3. be kept under **version control**.
4. **prioritize legibility** to other humans.## Guides
- **[Data analysis 001](/001-setting-up.md) - Setup**
- Setting up your environment
- Organizing your analysis
- **[Data analysis 101](/101-intro-to-pweave.md) - Standard toolkit**
- Introduction to `pweave`
- **[Data analysis 201](/201-multi-part-patterns.md) - Putting it all together**
- Patterns for multi-part analysis
- **[Appendix A](/appendix_a-latex.md) - LaTeX**
- **[Appendix B](/appendix_b-pandas.md) - pandas**
- **[Appendix C](https://github.com/datamade/how-to/issues/34#issue-483477936) (external issue) – matplotlib**## Examples
Under construction in the `examples` dir! 👷