Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/datamllab/AutoRec
https://github.com/datamllab/AutoRec
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/datamllab/AutoRec
- Owner: datamllab
- Created: 2019-10-10T02:42:13.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-03-24T22:54:23.000Z (almost 2 years ago)
- Last Synced: 2024-05-21T15:33:44.461Z (8 months ago)
- Language: Python
- Size: 35.5 MB
- Stars: 49
- Watchers: 6
- Forks: 11
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- automl - Homepage - Automated Recommender System (Uncategorized / Uncategorized)
README
# AutoRec
AutoRec is a Keras-based implementation of automated recommendation algorithms for both rating prediction and Click Through Rate task.
For more details, see the [Documentation](http://autorec.ai).
## Installation
Install from `pip`:
```
pip install autorec
```## Quickstart
Build an rating prediction model which can search the model architecture automatically on the MovieLens dataset is very easy as follows:
```python
# -*- coding: utf-8 -*-
import tensorflow as tf
from autorecsys.auto_search import Search
from autorecsys.pipeline import Input, LatentFactorMapper, RatingPredictionOptimizer, ElementwiseInteraction
from autorecsys.pipeline.preprocessor import MovielensPreprocessor, NetflixPrizePreprocessor
from autorecsys.recommender import RPRecommender# load dataset
#Movielens 1M Dataset
data = MovielensPreprocessor("./examples/datasets/ml-1m/ratings.dat")
data.preprocessing(val_test_size=0.1, random_state=1314)
train_X, train_y = data.train_X, data.train_y
val_X, val_y = data.val_X, data.val_y
test_X, test_y = data.test_X, data.test_y
user_num, item_num = data.user_num, data.item_num# build the pipeline.
input = Input(shape=[2])
user_emb = LatentFactorMapper(column_id=0,
num_of_entities=user_num,
embedding_dim=64)(input)
item_emb = LatentFactorMapper(column_id=1,
num_of_entities=item_num,
embedding_dim=64)(input)
output = ElementwiseInteraction(elementwise_type="innerporduct")([user_emb, item_emb])
output = RatingPredictionOptimizer()(output)
model = RPRecommender(inputs=input, outputs=output)# AutoML search and predict
searcher = Search(model=model,
tuner='greedy', # hyperband, greedy, bayesian
tuner_params={"max_trials": 5}
)searcher.search(x=train_X,
y=train_y,
x_val=val_X,
y_val=val_y,
objective='val_mse',
batch_size=1024,
epochs=10,
callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=1)])
```