https://github.com/dataspieler12345/mathematics_for_ai
Mathematics for AI
https://github.com/dataspieler12345/mathematics_for_ai
jupyter-notebook matplotlib-pyplot numpy python sympy-library
Last synced: about 2 months ago
JSON representation
Mathematics for AI
- Host: GitHub
- URL: https://github.com/dataspieler12345/mathematics_for_ai
- Owner: DataSpieler12345
- Created: 2025-07-07T14:45:02.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2025-07-07T15:05:16.000Z (5 months ago)
- Last Synced: 2025-07-22T19:12:19.938Z (4 months ago)
- Topics: jupyter-notebook, matplotlib-pyplot, numpy, python, sympy-library
- Language: Jupyter Notebook
- Homepage:
- Size: 51.8 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# 🚀 Mathematics for AI Beginners
[](LICENSE) [](https://www.python.org/) [](https://jupyter.org/)

## 📖 About
A beginner-friendly mini-project demonstrating symbolic differentiation and integration with Python. We explore 12 derivative exercises and 12 integral exercises using Sympy, visualized in Jupyter Notebook.
## 📋 Table of Contents
1. [Installation](#installation)
2. [Usage](#usage)
3. [Exercises](#exercises)
- [Derivatives](#derivatives)
- [Integrals](#integrals)
4. [Tech Stack](#tech-stack)
5. [Contributing](#contributing)
6. [License](#license)
## ⚙️ Installation
```bash
# 1. Clone the repo
git clone https://github.com/your-username/your-repo.git
cd your-repo
# 2. Create & activate virtual environment
python3 -m venv venv
source venv/bin/activate # macOS/Linux
# venv\Scripts\Activate.ps1 # Windows PowerShell
# 3. Install dependencies
pip install -r requirements.txt
# Launch Jupyter Notebook
jupyter notebook calculus_project.ipynb
Work through the Derivatives section first, then Integrals.
Code cells render results in framed LaTeX for clarity.
## ▶️ Usage
* Ensure your virtual environment is activated
* Launch the notebook:
jupyter notebook calculus_project.ipynb
Complete the Derivatives section first, then Integrals
Each code cell displays the result as a framed LaTeX equation for clarity
## 🧮 Exercises
📈 Derivatives
Power rule, product rule, quotient rule, chain rule
12 worked examples:
1. x**3 - 5*x**2 + 2*x - 1
2. sin(x)*exp(x)
3. log(x)/x
4. cos(x)**2
5. exp(-2*x)
6. tan(x)
7. sqrt(x)
8. (3*x+1)**5
9. x**x
10. atan(x)
11. sin(x**2)
12. log(x,10)
📉 Integrals
Power integrals, trigonometric identities, substitution, integration by parts
12 worked examples:
1. ∫ x^3 dx
2. ∫ 1/(x^2+1) dx
3. ∫ sin^2(x) dx
4. ∫ x*exp(x) dx
5. ∫ exp(-2*x) dx
6. ∫ log(x) dx
7. ∫ cos(x) dx
8. ∫ tan(x) dx
9. ∫ x^2*cos(x) dx
10. ∫ 2*x/(x^2+1) dx
11. ∫ sin(3*x) dx
12. ∫₀^∞ exp(-x) dx
🧰 Tech Stack
* Python 3.8+
* Sympy for symbolic math
* NumPy & Matplotlib for numerical checks & plots
* Jupyter Notebook for interactive presentation
🤝 Contributing
* Fork the repository
* Create a new branch
git checkout -b feature/your-feature
* Commit your changes
git commit -m "Add some feature"
git commit -m "Add some feature"
* Push to your branch
git push origin feature/your-feature
* Open a Pull Request
👉🏽 Please follow the existing style and update documentation as needed.
📜 License
@ This project is licensed under the MIT License. See LICENSE for details.