An open API service indexing awesome lists of open source software.

https://github.com/dataspieler12345/mathematics_for_ai

Mathematics for AI
https://github.com/dataspieler12345/mathematics_for_ai

jupyter-notebook matplotlib-pyplot numpy python sympy-library

Last synced: about 2 months ago
JSON representation

Mathematics for AI

Awesome Lists containing this project

README

          

# 🚀 Mathematics for AI Beginners

[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE) [![Python 3.8+](https://img.shields.io/badge/Python-3.8%2B-blue.svg)](https://www.python.org/) [![Jupyter](https://img.shields.io/badge/Jupyter-Notebook-orange.svg)](https://jupyter.org/)

Calculus Animation

## 📖 About
A beginner-friendly mini-project demonstrating symbolic differentiation and integration with Python. We explore 12 derivative exercises and 12 integral exercises using Sympy, visualized in Jupyter Notebook.

## 📋 Table of Contents
1. [Installation](#installation)
2. [Usage](#usage)
3. [Exercises](#exercises)
- [Derivatives](#derivatives)
- [Integrals](#integrals)
4. [Tech Stack](#tech-stack)
5. [Contributing](#contributing)
6. [License](#license)

## ⚙️ Installation
```bash
# 1. Clone the repo
git clone https://github.com/your-username/your-repo.git
cd your-repo

# 2. Create & activate virtual environment
python3 -m venv venv
source venv/bin/activate # macOS/Linux
# venv\Scripts\Activate.ps1 # Windows PowerShell

# 3. Install dependencies
pip install -r requirements.txt

# Launch Jupyter Notebook
jupyter notebook calculus_project.ipynb

Work through the Derivatives section first, then Integrals.

Code cells render results in framed LaTeX for clarity.

## ▶️ Usage

* Ensure your virtual environment is activated

* Launch the notebook:

jupyter notebook calculus_project.ipynb

Complete the Derivatives section first, then Integrals

Each code cell displays the result as a framed LaTeX equation for clarity

## 🧮 Exercises

📈 Derivatives

Power rule, product rule, quotient rule, chain rule

12 worked examples:

1. x**3 - 5*x**2 + 2*x - 1

2. sin(x)*exp(x)

3. log(x)/x

4. cos(x)**2

5. exp(-2*x)

6. tan(x)

7. sqrt(x)

8. (3*x+1)**5

9. x**x

10. atan(x)

11. sin(x**2)

12. log(x,10)

📉 Integrals

Power integrals, trigonometric identities, substitution, integration by parts

12 worked examples:

1. ∫ x^3 dx

2. ∫ 1/(x^2+1) dx

3. ∫ sin^2(x) dx

4. ∫ x*exp(x) dx

5. ∫ exp(-2*x) dx

6. ∫ log(x) dx

7. ∫ cos(x) dx

8. ∫ tan(x) dx

9. ∫ x^2*cos(x) dx

10. ∫ 2*x/(x^2+1) dx

11. ∫ sin(3*x) dx

12. ∫₀^∞ exp(-x) dx

🧰 Tech Stack

* Python 3.8+

* Sympy for symbolic math

* NumPy & Matplotlib for numerical checks & plots

* Jupyter Notebook for interactive presentation

🤝 Contributing
* Fork the repository

* Create a new branch

git checkout -b feature/your-feature

* Commit your changes

git commit -m "Add some feature"

git commit -m "Add some feature"

* Push to your branch

git push origin feature/your-feature

* Open a Pull Request

👉🏽 Please follow the existing style and update documentation as needed.

📜 License
@ This project is licensed under the MIT License. See LICENSE for details.