Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/datawhalechina/torch-rechub
A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.
https://github.com/datawhalechina/torch-rechub
ctr-prediction pytorch recommendation-system recsys
Last synced: 2 days ago
JSON representation
A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.
- Host: GitHub
- URL: https://github.com/datawhalechina/torch-rechub
- Owner: datawhalechina
- License: mit
- Created: 2022-05-12T09:53:32.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2025-01-07T07:03:37.000Z (15 days ago)
- Last Synced: 2025-01-13T08:04:40.787Z (9 days ago)
- Topics: ctr-prediction, pytorch, recommendation-system, recsys
- Language: Python
- Homepage:
- Size: 1.1 MB
- Stars: 449
- Watchers: 12
- Forks: 79
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - datawhalechina/torch-rechub - learn风格易用的API。模型训练与模型定义解耦,易拓展,可针对不同类型的模型设置不同的训练机制。接受pandas的DataFrame、Dict数据输入,上手成本低。高度模块化,容易调用组装成新模型 LR、MLP、FM、FFM、CIN、target-attention、self-attention、transformer。支持常见排序模型 WideDeep、DeepFM、DIN、DCN、xDeepFM等。支持常见召回模型 DSSM、YoutubeDNN、YoutubeDSSM、FacebookEBR、MIND等。多任务学习支持SharedBottom、ESMM、MMOE、PLE、AITM等模型。 GradNorm、UWL、MetaBanlance等动态loss加权机制。 (推荐系统算法库与列表 / 网络服务_其他)
README
# Torch-RecHub
## 中文Wiki站
查看最新研发进度,认领感兴趣的研发任务,学习rechub模型复现心得,加入rechub共建者团队等
[点击链接](https://www.wolai.com/rechub/2qjdg3DPy1179e1vpcHZQC)
## 安装
```python
#稳定版
pip install torch-rechub#最新版(推荐)
1. git clone https://github.com/datawhalechina/torch-rechub.git
2. cd torch-rechub
3. python setup.py install
```## 核心定位
易用易拓展,聚焦复现业界实用的推荐模型,以及泛生态化的推荐场景
## 主要特性
* scikit-learn风格易用的API(fit、predict),即插即用
* 模型训练与模型定义解耦,易拓展,可针对不同类型的模型设置不同的训练机制
* 接受pandas的DataFrame、Dict数据输入,上手成本低
* 高度模块化,支持常见Layer,容易调用组装成新模型
* LR、MLP、FM、FFM、CIN
* target-attention、self-attention、transformer
* 支持常见排序模型
* WideDeep、DeepFM、DIN、DCN、xDeepFM等
* 支持常见召回模型
* DSSM、YoutubeDNN、YoutubeDSSM、FacebookEBR、MIND等
* 丰富的多任务学习支持
* SharedBottom、ESMM、MMOE、PLE、AITM等模型
* GradNorm、UWL、MetaBanlance等动态loss加权机制
* 聚焦更生态化的推荐场景
- [ ] 冷启动
- [ ] 延迟反馈
* [ ] 去偏
* 支持丰富的训练机制
* [ ] 对比学习
* [ ] 蒸馏学习
* [ ] 第三方高性能开源Trainer支持(Pytorch Lighting)
* [ ] 更多模型正在开发中
## 快速使用
### 使用案例
- 所有模型使用案例参考 `/examples`
- 202206 Datawhale-RecHub推荐课程 组队学习期间notebook教程参考 `/tutorials`
### 精排(CTR预测)
```python
from torch_rechub.models.ranking import DeepFM
from torch_rechub.trainers import CTRTrainer
from torch_rechub.utils.data import DataGeneratordg = DataGenerator(x, y)
train_dataloader, val_dataloader, test_dataloader = dg.generate_dataloader(split_ratio=[0.7, 0.1], batch_size=256)model = DeepFM(deep_features=deep_features, fm_features=fm_features, mlp_params={"dims": [256, 128], "dropout": 0.2, "activation": "relu"})
ctr_trainer = CTRTrainer(model)
ctr_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
```### 多任务排序
```python
from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
from torch_rechub.trainers import MTLTrainertask_types = ["classification", "classification"]
model = MMOE(features, task_types, 8, expert_params={"dims": [32,16]}, tower_params_list=[{"dims": [32, 16]}, {"dims": [32, 16]}])mtl_trainer = MTLTrainer(model)
mtl_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
```### 召回模型
```python
from torch_rechub.models.matching import DSSM
from torch_rechub.trainers import MatchTrainer
from torch_rechub.utils.data import MatchDataGeneratordg = MatchDataGenerator(x y)
train_dl, test_dl, item_dl = dg.generate_dataloader(test_user, all_item, batch_size=256)model = DSSM(user_features, item_features, temperature=0.02,
user_params={
"dims": [256, 128, 64],
"activation": 'prelu',
},
item_params={
"dims": [256, 128, 64],
"activation": 'prelu',
})match_trainer = MatchTrainer(model)
match_trainer.fit(train_dl)```