Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/datawhalechina/torch-rechub

A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.
https://github.com/datawhalechina/torch-rechub

ctr-prediction pytorch recommendation-system recsys

Last synced: 4 days ago
JSON representation

A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.

Awesome Lists containing this project

README

        

# Torch-RecHub








## 中文Wiki站

查看最新研发进度,认领感兴趣的研发任务,学习rechub模型复现心得,加入rechub共建者团队等

[点击链接](https://www.wolai.com/rechub/2qjdg3DPy1179e1vpcHZQC)

## 安装

```python
#稳定版
pip install torch-rechub

#最新版(推荐)
1. git clone https://github.com/datawhalechina/torch-rechub.git
2. cd torch-rechub
3. python setup.py install
```

## 核心定位

易用易拓展,聚焦复现业界实用的推荐模型,以及泛生态化的推荐场景

## 主要特性

* scikit-learn风格易用的API(fit、predict),即插即用

* 模型训练与模型定义解耦,易拓展,可针对不同类型的模型设置不同的训练机制

* 接受pandas的DataFrame、Dict数据输入,上手成本低

* 高度模块化,支持常见Layer,容易调用组装成新模型

* LR、MLP、FM、FFM、CIN

* target-attention、self-attention、transformer

* 支持常见排序模型

* WideDeep、DeepFM、DIN、DCN、xDeepFM等

* 支持常见召回模型

* DSSM、YoutubeDNN、YoutubeDSSM、FacebookEBR、MIND等

* 丰富的多任务学习支持

* SharedBottom、ESMM、MMOE、PLE、AITM等模型

* GradNorm、UWL、MetaBanlance等动态loss加权机制

* 聚焦更生态化的推荐场景

- [ ] 冷启动

- [ ] 延迟反馈

* [ ] 去偏

* 支持丰富的训练机制

* [ ] 对比学习

* [ ] 蒸馏学习

* [ ] 第三方高性能开源Trainer支持(Pytorch Lighting)

* [ ] 更多模型正在开发中

## 快速使用

### 使用案例

- 所有模型使用案例参考 `/examples`

- 202206 Datawhale-RecHub推荐课程 组队学习期间notebook教程参考 `/tutorials`

### 精排(CTR预测)

```python
from torch_rechub.models.ranking import DeepFM
from torch_rechub.trainers import CTRTrainer
from torch_rechub.utils.data import DataGenerator

dg = DataGenerator(x, y)
train_dataloader, val_dataloader, test_dataloader = dg.generate_dataloader(split_ratio=[0.7, 0.1], batch_size=256)

model = DeepFM(deep_features=deep_features, fm_features=fm_features, mlp_params={"dims": [256, 128], "dropout": 0.2, "activation": "relu"})

ctr_trainer = CTRTrainer(model)
ctr_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
```

### 多任务排序

```python
from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
from torch_rechub.trainers import MTLTrainer

task_types = ["classification", "classification"]
model = MMOE(features, task_types, 8, expert_params={"dims": [32,16]}, tower_params_list=[{"dims": [32, 16]}, {"dims": [32, 16]}])

mtl_trainer = MTLTrainer(model)
mtl_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
```

### 召回模型

```python
from torch_rechub.models.matching import DSSM
from torch_rechub.trainers import MatchTrainer
from torch_rechub.utils.data import MatchDataGenerator

dg = MatchDataGenerator(x y)
train_dl, test_dl, item_dl = dg.generate_dataloader(test_user, all_item, batch_size=256)

model = DSSM(user_features, item_features, temperature=0.02,
user_params={
"dims": [256, 128, 64],
"activation": 'prelu',
},
item_params={
"dims": [256, 128, 64],
"activation": 'prelu',
})

match_trainer = MatchTrainer(model)
match_trainer.fit(train_dl)

```