Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/datumbrain/openai-flask-starter

Starter project with OpenAI + Flask and template HTML.
https://github.com/datumbrain/openai-flask-starter

chatbot conversational-agent conversational-agents conversational-bot conversational-bots flask gpt openai python

Last synced: 29 days ago
JSON representation

Starter project with OpenAI + Flask and template HTML.

Awesome Lists containing this project

README

        

# OpenAI Flask Starter

![Banner Page Picture](./banner.png)

This project demonstrates how to create a simple AI chatbot using Python, Flask, and OpenAI's Large Language Model (LLM) API. The chatbot generates human-like responses powered by GPT-4 (or GPT-3.5).

## Features

- **Chatbot**: Conversational AI powered by OpenAI's GPT models.
- **Web Interface**: Built using Flask to interact with the bot via a browser.
- **OpenAI Integration**: Utilizes the latest OpenAI API for chat completions.
- **Docker Support**: Ready for containerization with a `Dockerfile` and `docker-compose` setup.
- **Easy Setup**: Uses Python's built-in virtual environment.

## Prerequisites

- Python 3.7+
- OpenAI API key. You can get it [here](https://beta.openai.com/signup/).

## Installation

1. **Clone the Repository**:

```bash
git clone https://github.com/datumbrain/openai-flask-starter.git
cd openai-flask-starter
```

2. **Set Up Virtual Environment**:

Create a virtual environment and activate it:

```bash
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
```

3. **Install Dependencies**:

Install the required packages using `requirements.txt`:

```bash
pip install -r requirements.txt
```

4. **Set Up Your OpenAI API Key**:

Add your OpenAI API key in `.env.sample` and rename the file to `.env`:

```bash
OPENAI_API_KEY=your-api-key-here
HTTP_PORT=5899 # change it as you like
```

5. **Run the Flask Application**:

Start the Flask app by running:

```bash
python main.py
```

The app will be available at `http://127.0.0.1:5899/`.

## Docker Setup (Optional)

You can run the project in a Docker container using the following steps:

1. **Build the Docker Image**:

```bash
docker-compose build
```

2. **Run the Application**:

```bash
docker-compose up
```

The app will be available at `http://127.0.0.1:5899/`.

## Project Structure

```raw
.
├── .dockerignore # Files to ignore in Docker context
├── .env.sample # Environment variable example file
├── .gitignore # Files to ignore in git
├── Dockerfile # Docker image setup
├── LICENSE # License information
├── README.md # Project documentation
├── docker-compose.yml # Docker Compose configuration
├── main.py # Flask server and chatbot logic
├── requirements.txt # Project dependencies
└── templates/
├── index.html # Frontend HTML for interacting with the chatbot
└── styles/
└── custom.css # custom CSS styling
```

## Usage

Once the app is running, open your browser and go to `http://127.0.0.1:5899/`. Type a message in the input box, and the chatbot will respond using the GPT-4 model.

## License

This project is licensed under the MIT License.