https://github.com/david-lazaro-fernandez/hackmty2024
Softtek wants to buy this
https://github.com/david-lazaro-fernandez/hackmty2024
digital-twins python streamlit tracking-by-detection yolov8
Last synced: 21 days ago
JSON representation
Softtek wants to buy this
- Host: GitHub
- URL: https://github.com/david-lazaro-fernandez/hackmty2024
- Owner: David-Lazaro-Fernandez
- License: gpl-3.0
- Created: 2024-09-14T17:58:04.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-15T18:14:14.000Z (about 1 year ago)
- Last Synced: 2025-06-20T00:43:52.164Z (4 months ago)
- Topics: digital-twins, python, streamlit, tracking-by-detection, yolov8
- Language: Python
- Homepage:
- Size: 82.2 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 10
-
Metadata Files:
- Readme: README copy.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
## Introduction
This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) with Object Tracking and Counting capability. The interface is powered by [Streamlit](https://github.com/streamlit/streamlit).## Features
- Feature1: Object detection task.
- Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Feature3: Multiple input formats. `Image`, `Video`, `Webcam`
- Feature4: Multiple Object Tracking and Counting.## Run online
You can use [This](https://monemati-yolov8-deepsort-streamlit-app-et5bli.streamlit.app/) link to try an online version on Streamlit.## Installation
### Create a virtual environment
```commandline
# create
python -m venv yolov8-mot-streamlit# activate
source yolov8-mot-streamlit/bin/activate
```### Clone repository
```commandline
git clone https://github.com/monemati/YOLOv8-DeepSORT-Streamlit.git
cd YOLOv8-DeepSORT-Streamlit
```### Install packages
```commandline
# Streamlit dependencies
pip install streamlit# YOLOv8 dependecies
pip install -e '.[dev]'
```
### Download Pre-trained YOLOv8 Detection Weights
Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below.| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |## Run
```commandline
streamlit run app.py
```
Then will start the Streamlit server and open your web browser to the default Streamlit page automatically.
For Object Counting, you can choose "Video" from "Select Source" combo box and use "test3.mp4" inside videos folder as an example.## Result

## Acknowledgement
- https://github.com/ultralytics/ultralytics
- https://github.com/streamlit/streamlit
- https://github.com/ZQPei/deep_sort_pytorch
- https://github.com/JackDance/YOLOv8-streamlit-app
- https://github.com/MuhammadMoinFaisal/YOLOv8-DeepSORT-Object-Tracking