Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/davidb/sandbox_axum_observability
Sandbox to experiment axum and observability
https://github.com/davidb/sandbox_axum_observability
Last synced: about 2 months ago
JSON representation
Sandbox to experiment axum and observability
- Host: GitHub
- URL: https://github.com/davidb/sandbox_axum_observability
- Owner: davidB
- Created: 2022-04-23T19:51:58.000Z (over 2 years ago)
- Default Branch: development
- Last Pushed: 2023-08-06T16:12:02.000Z (over 1 year ago)
- Last Synced: 2024-05-01T22:11:42.384Z (8 months ago)
- Language: Rust
- Size: 1.36 MB
- Stars: 28
- Watchers: 4
- Forks: 0
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# sandbox_axum_observability
!!! WIP !!!
Sandbox I used to experiment [axum] and observability (for target platform), observability via infra (as most as possible). The stack and framework selected:
- [App (Rust http service)](#app-rust-http-service)
- [Main components for the app](#main-components-for-the-app)
- [Usage on local shell](#usage-on-local-shell)
- [direct to Jaeger](#direct-to-jaeger)
- [Infra](#infra)
- [Kubernetes](#kubernetes)
- [Main components for the infra](#main-components-for-the-infra)
- [Infra setup](#infra-setup)
- [Links & inspiration](#links--inspiration)## App (Rust http service)
The setup of the app (microservice) defined under `/app`. The Goals of the app
- [ ] Use axum, async api,...
- [ ] Delegate collect of metrics, logs,... to the infra as much as possible (eg http status, rps, ...)
- [ ] Try to be a cloud native app, follow 12 factor app recommendation via:
- [x] Configuration dependent of the platform / stack override via Environment variable (use clap)
- [x] Health-check via a `GET /health` endpoint
- [x] Log printed on std output, in json format
- [x] Log include trace_id to easily link response, log and trace
- [x] on first log of the span, when incoming request has trace_id
- [x] on following log of the span, when incoming request has trace_id
- [x] on first log of the span, when incoming request has NO trace_id (imply start an new one)
- [x] on following log of the span, when incoming request has trace_id
- [x] To simulate a multi-level microservice architecture, the service can call `APP_REMOTE_URL` (to define as it-self in the infra)
- [ ] Provide a endpoint `GET /depth/{:depth}` that wait a `duration` then call endpoint defined by `APP_REMOTE_URL` with the path parameter `depth` equals to current `depth - 1`
- [x] `depth`: value between 0 and 10, if undefined a random value will be used.
- [x] `duration_level_max`: duration in seconds, if undefined a random between 0.0 and 2.0
- [x] the response of `APP_REMOTE_URL` is returned as wrapped response
- [x] if `depth` is 0, then it returns the `{ "trace_id": "...."}`
- [ ] if failure, then it returns the `{ "err_trace_id": "...."}`
- [x] call `GET /` is like calling `GET /depth/{:depth}` with a random depth between 0 and 10
- [ ] To simulate error
- [ ] `GET /health` can failed randomly via configuration `APP_HEALTH_FAILURE_PROBABILITY` (value between `0.0` and `1.0`)
- [ ] `GET /depth/{}` can failed randomly via query parameter `failure_probability` (value between `0.0` and `1.0`)
- [ ] add test to validate and to demo feature above### Main components for the app
- [ ] [tokio-rs/axum: Ergonomic and modular web framework built with Tokio, Tower, and Hyper](https://github.com/tokio-rs/axum) as rust web framework.
- [ ] [tokio-rs/tracing: Application level tracing for Rust.](https://github.com/tokio-rs/tracing) (and also for log)
- [ ] [OpenTelemetry](https://opentelemetry.io/)### Usage on local shell
Launch the server
```sh
cd app
cargo run
```Send http request from a curl client
```sh
# without client trace
# FIXME the log on the server include an empty trace_id
❯ curl -i "http://localhost:8080/depth/0"
HTTP/1.1 200 OK
content-type: application/json
content-length: 67
access-control-allow-origin: *
vary: origin
vary: access-control-request-method
vary: access-control-request-headers
date: Sat, 21 May 2022 15:35:32 GMT{"simulation":"DONE","trace_id":"522e44c536fec8020790c59f20560d1a"}⏎
# with client trace
# for traceparent see [Trace Context](https://www.w3.org/TR/trace-context/#trace-context-http-headers-format)
❯ curl -i "http://localhost:8080/depth/2" -H 'traceparent: 00-0af7651916cd43dd8448eb211c80319c-b9c7c989f97918e1-00'
HTTP/1.1 200 OK
content-type: application/json
content-length: 113
access-control-allow-origin: *
vary: origin
vary: access-control-request-method
vary: access-control-request-headers
date: Sat, 21 May 2022 15:33:54 GMT{"depth":2,"response":{"depth":1,"response":{"simulation":"DONE","trace_id":"0af7651916cd43dd8448eb211c80319c"}}}⏎
```on jaeger web ui, service `example-opentelemetry` should be listed and trace should be like
![trace in jaeger](doc/images/20220521164336.png)
### direct to Jaeger
Launch a local jaeger (nased on [Jaeger > Getting Started > All in One](https://www.jaegertracing.io/docs/1.38/getting-started/#all-in-one))
```nushell
## docker cli can be used instead of nerdctl
## to start jaeger (and auto remove on stop)
(nerdctl run --name jaeger --rm
-e COLLECTOR_ZIPKIN_HOST_PORT=:9411
-e COLLECTOR_OTLP_ENABLED=true
-p 6831:6831/udp
-p 6832:6832/udp
-p 5778:5778
-p 16686:16686
-p 4317:4317
-p 4318:4318
-p 14250:14250
-p 14268:14268
-p 14269:14269
-p 9411:9411
jaegertracing/all-in-one:1.38
)## Ctrl-C to stop it
```open [Jaeger web UI](http://localhost:16686/)
Configure the exporter via environment variable [sdk-environment-variables](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/sdk-environment-variables.md)
```nushell
# replace let-env by "export" for bash...
let-env OTEL_EXPORTER_OTLP_PROTOCOL = "grpc"# send trace via jaeger protocol to local jaeger (agent)
cargo run -- --tracing-collector-kind jaeger
```## Infra
### Kubernetes
The setup of the infrastructure (cluster) defined under `/infra/kubernetes`.
- Try to be more like a target / live environment, so it requires more resources on local than using "local dev approach":
- use distributed solution (loki, tempo,...)
- use S3 backend (minio).
- no ingress or api gateway setup, access will be via port forward
- use wrapper/adapter helm chart to install components, like if it is deployed by a gitops (pull mode) system
- keep components separated to allow partial reuse and to identify integration point#### Main components for the infra
- [x] S3 buckets to store logs, metrics, traces,...
- [x] Use Minio to provide S3 buckets in on desktop cluster (use a deprecated version but easier to setup than the operator)
- [x] [Grafana](https://grafana.com/oss/grafana/) for dashboard and integration of log, trace, metrics
- artifacthub.io : [grafana 6.31.0 · grafana/grafana](https://artifacthub.io/packages/helm/grafana/grafana)
- enable sidecars, to allow other components to register datasources, dashboards, notifiers, alerts
- [x] [Grafana Tempo](https://grafana.com/oss/tempo/) to store trace
- artifacthub.io: [tempo-distributed 0.20.2 · grafana/grafana](https://artifacthub.io/packages/helm/grafana/tempo-distributed)
- Setup of tempo is based on [tempo/example/helm at main · grafana/tempo](https://github.com/grafana/tempo/tree/main/example/helm), in distributed mode (consume more resources, aka several pods)
- [x] [Grafana Loki](https://grafana.com/oss/loki/) to store log
- [x] [Promtail](https://grafana.com/docs/loki/latest/clients/promtail/) as log collector (also provide by Grafana)
- artifacthub.io: [promtail 6.0.0 · grafana/grafana](https://artifacthub.io/packages/helm/grafana/promtail)
- [x] [prometheus-operator/kube-prometheus: Use Prometheus to monitor Kubernetes and applications running on Kubernetes](https://github.com/prometheus-operator/kube-prometheus), a collection of Kubernetes manifests, Grafana dashboards, and Prometheus rules combined with documentation and scripts to provide easy to operate end-to-end Kubernetes cluster monitoring with Prometheus using the Prometheus Operator.
- artifacthub.io :[kube-prometheus-stack 36.2.0 · prometheus/prometheus-community](https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack))
- provide(by default, see doc): grafana, prometheus-operator, prometheus, alertnamaner, node-exporter
- [x] [Linkerd](https://linkerd.io/) a service-mesh but used for its observability feature
- [x] [OpenTelemetry Collector](https://opentelemetry.io/docs/collector/) as collector for traces
- artifacthub.io: [opentelemetry-collector 0.22.0 · opentelemetry/opentelemetry-helm](https://artifacthub.io/packages/helm/opentelemetry-helm/opentelemetry-collector)
- alternatives: grafana agent, send directly to tempo, use the collector from linkerd-jaeger
- [ ] TODO: use opentelemetry operator (currently some issue with port)
- [x] [Rancher Desktop](https://rancherdesktop.io/) as kubernetes cluster for local test, but I hope the code to be easily portable for kind, minikube, k3d, k3s,...
- [ ] Additional dashboards, alerts,... installed via grafana's sidecars
- [ ] Use secrets for credentials#### Infra setup
Required:
- `kubectl`, `helm` v3 : to manage the k8s cluster
Optional:
- `nushell`: to use `tools.nu` and to avoid too many manual commands
- Lens / OpenLens / k9s / your favorite UI: to explore states of k8s cluster```nushell
# launch nushell
nu
# after launch of your local (or remote) cluster, configure kubectl to access it as current context
cd infra/kubernetes
use tools.nu
tools install_all_charts
# to uninstall stuff ;-)
tools uninstall_all_charts
# to have the list of subcommand
tools
```- manual creation of `loki` bucket
sample list of components
```sh
❯ kubectl get service -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default kubernetes ClusterIP 10.43.0.1 443/TCP 95m
kube-system kube-dns ClusterIP 10.43.0.10 53/UDP,53/TCP,9153/TCP 95m
kube-system metrics-server ClusterIP 10.43.155.46 443/TCP 95m
kube-system traefik LoadBalancer 10.43.205.20 192.168.5.15 80:30073/TCP,443:31505/TCP 95m
cert-manager cert-manager-webhook ClusterIP 10.43.208.146 443/TCP 94m
cert-manager cert-manager ClusterIP 10.43.60.191 9402/TCP 94m
minio minio ClusterIP 10.43.19.151 9000/TCP 94m
grafana grafana ClusterIP 10.43.171.106 80/TCP 93m
kube-system kube-prometheus-stack-kube-scheduler ClusterIP None 10251/TCP 93m
kube-system kube-prometheus-stack-coredns ClusterIP None 9153/TCP 93m
kube-system kube-prometheus-stack-kube-proxy ClusterIP None 10249/TCP 93m
kube-system kube-prometheus-stack-kube-controller-manager ClusterIP None 10257/TCP 93m
kube-system kube-prometheus-stack-kube-etcd ClusterIP None 2379/TCP 93m
kube-prometheus-stack kube-prometheus-stack-alertmanager ClusterIP 10.43.114.25 9093/TCP 93m
kube-prometheus-stack kube-prometheus-stack-operator ClusterIP 10.43.244.229 443/TCP 93m
kube-prometheus-stack kube-prometheus-stack-prometheus-node-exporter ClusterIP 10.43.173.60 9100/TCP 93m
kube-prometheus-stack kube-prometheus-stack-kube-state-metrics ClusterIP 10.43.147.90 8080/TCP 93m
kube-prometheus-stack kube-prometheus-stack-prometheus ClusterIP 10.43.139.178 9090/TCP 93m
kube-system kube-prometheus-stack-kubelet ClusterIP None 10250/TCP,10255/TCP,4194/TCP 93m
loki-distributed loki-distributed-memberlist ClusterIP None 7946/TCP 93m
loki-distributed loki-distributed-ingester-headless ClusterIP None 3100/TCP,9095/TCP 93m
loki-distributed loki-distributed-query-frontend ClusterIP None 3100/TCP,9095/TCP,9096/TCP 93m
loki-distributed loki-distributed-querier-headless ClusterIP None 3100/TCP,9095/TCP 93m
loki-distributed loki-distributed-distributor ClusterIP 10.43.235.183 3100/TCP,9095/TCP 93m
loki-distributed loki-distributed-querier ClusterIP 10.43.35.214 3100/TCP,9095/TCP 93m
loki-distributed loki-distributed-gateway ClusterIP 10.43.245.76 80/TCP 93m
loki-distributed loki-distributed-ingester ClusterIP 10.43.168.198 3100/TCP,9095/TCP 93m
tempo-distributed tempo-distributed-gossip-ring ClusterIP None 7946/TCP 93m
tempo-distributed tempo-distributed-query-frontend-discovery ClusterIP None 3100/TCP,9095/TCP,16686/TCP,16687/TCP 93m
tempo-distributed tempo-distributed-query-frontend ClusterIP 10.43.85.84 3100/TCP,9095/TCP,16686/TCP,16687/TCP 93m
tempo-distributed tempo-distributed-ingester ClusterIP 10.43.242.5 3100/TCP,9095/TCP 93m
tempo-distributed tempo-distributed-querier ClusterIP 10.43.20.61 3100/TCP,9095/TCP 93m
tempo-distributed tempo-distributed-distributor ClusterIP 10.43.13.183 3100/TCP,9095/TCP,4317/TCP,55680/TCP 93m
tempo-distributed tempo-distributed-memcached ClusterIP 10.43.106.141 11211/TCP,9150/TCP 93m
tempo-distributed tempo-distributed-compactor ClusterIP 10.43.10.39 3100/TCP 93m
tempo-distributed tempo-distributed-metrics-generator ClusterIP 10.43.129.131 9095/TCP,3100/TCP 93m
opentelemetry-collector opentelemetry-collector ClusterIP 10.43.15.153 6831/UDP,14250/TCP,14268/TCP,4317/TCP,4318/TCP,9411/TCP 93m
linkerd linkerd-dst ClusterIP 10.43.126.243 8086/TCP 92m
linkerd linkerd-dst-headless ClusterIP None 8086/TCP 92m
linkerd linkerd-sp-validator ClusterIP 10.43.41.57 443/TCP 92m
linkerd linkerd-policy ClusterIP None 8090/TCP 92m
linkerd linkerd-policy-validator ClusterIP 10.43.225.36 443/TCP 92m
linkerd linkerd-identity ClusterIP 10.43.136.50 8080/TCP 92m
linkerd linkerd-identity-headless ClusterIP None 8080/TCP 92m
linkerd linkerd-proxy-injector ClusterIP 10.43.51.211 443/TCP 92m
app app ClusterIP 10.43.108.47 80/TCP 91m
linkerd-viz metrics-api ClusterIP 10.43.179.165 8085/TCP 67m
linkerd-viz tap-injector ClusterIP 10.43.71.201 443/TCP 67m
linkerd-viz tap ClusterIP 10.43.191.138 8088/TCP,443/TCP 67m
linkerd-viz web ClusterIP 10.43.18.39 8084/TCP,9994/TCP 67m
linkerd-jaeger jaeger-injector ClusterIP 10.43.72.101 443/TCP 67m
```Use port forward to access UI and service
```sh
# access grafana UI on http://127.0.0.1:8040
kubectl port-forward -n grafana service/grafana 8040:80# access grafana UI on http://127.0.0.1:9009 (user/pass: minio/minio123)
kubectl port-forward -n minio service/minio 9009:9000# access linerd-viz UI on http://127.0.0.1:8084
kubectl port-forward -n linkerd-viz service/web 8084:8084# On rancher-desktop only
# access traefik dashboard on http://127.0.0.1:9000/dashboard/#/
bash -c 'kubectl port-forward -n kube-system $(kubectl -n kube-system get pods --selector "app.kubernetes.io/name=traefik" --output=name) 9000:9000'```
Setup the app and call it
```sh
kubectl port-forward -n app service/app 8080:80
curl -i "http://localhost:8080/depth/2"
```![log+loki+grafana](assets/log_2022-07-24-212509_1737x1301_scrot.png)
![trace+tempo+grafana](assets/trace_2022-07-24-212616_1622x1288_scrot.png)
![node+tempo+grafana](assets/node_2022-07-24-212603_1639x1266_scrot.png)
But when using port-forward request doesn't go through linkerd proxy (so no monitoring of route,...) (see [port-forward traffic skips the proxy · Issue #2352 · linkerd/linkerd2](https://github.com/linkerd/linkerd2/issues/2352))
So If you don't have ingress setup,... you send request from inside the cluster:```sh
kubectl run tmp-shell -n default --restart=Never --rm -i -tty --image curlimages/curl:7.84.0 -- curl -L -v http://app.app.svc.cluster.local/depth/3# Or via an interactive shell if you want
kubectl run tmp-shell -n default --restart=Never --rm -i --tty --image curlimages/curl:7.84.0 -- sh
> curl -L -v http://app.app.svc.cluster.local/depth/3
...
> exitkubectl delete pod tmp-shell -n default
```![linkerd_route](assets/linkerd_route_2022-07-24-213720_1641x1289_scrot.png)
![pod_usage](assets/pod_2022-07-24-214343_1662x1265_scrot.png)
Sample list of other dashboards
![pod_usage](assets/dashboards_2022-07-24-214238_1388x1245_scrot.png)#### Links & inspiration
- [tempo/integration/microservices at main · grafana/tempo](https://github.com/grafana/tempo/tree/main/integration/microservices)