An open API service indexing awesome lists of open source software.

https://github.com/daviddrummond95/polar_llama

Plugin for interacting with LLMs in Polars
https://github.com/daviddrummond95/polar_llama

Last synced: 5 months ago
JSON representation

Plugin for interacting with LLMs in Polars

Awesome Lists containing this project

README

          

### Polar Llama

![Logo](https://raw.githubusercontent.com/daviddrummond95/polar_llama/refs/heads/main/PolarLlama.webp)

#### Overview

Polar Llama is a Python library designed to enhance the efficiency of making parallel inference calls to the ChatGPT API using the Polars dataframe tool. This library enables users to manage multiple API requests simultaneously, significantly speeding up the process compared to serial request handling.

#### Key Features

- **Parallel Inference**: Send multiple inference requests in parallel to the ChatGPT API without waiting for each individual request to complete.
- **Integration with Polars**: Utilizes the Polars dataframe for organizing and handling requests, leveraging its efficient data processing capabilities.
- **Easy to Use**: Simplifies the process of sending queries and retrieving responses from the ChatGPT API through a clean and straightforward interface.
- **Multi-Message Support**: Create and process conversations with multiple messages in context, supporting complex multi-turn interactions.
- **Multiple Provider Support**: Works with OpenAI, Anthropic, Gemini, Groq, and AWS Bedrock models, giving you flexibility in your AI infrastructure.

#### Installation

To install Polar Llama, you can use pip:

```bash
pip install polar-llama
```

Alternatively, for development purposes, you can install from source:

```bash
maturin develop
```

#### Example Usage

Here's how you can use Polar Llama to send multiple inference requests in parallel:

```python
import polars as pl
from polar_llama import string_to_message, inference_async, Provider
import dotenv

dotenv.load_dotenv()

# Example questions
questions = [
'What is the capital of France?',
'What is the difference between polars and pandas?'
]

# Creating a dataframe with questions
df = pl.DataFrame({'Questions': questions})

# Adding prompts to the dataframe
df = df.with_columns(
prompt=string_to_message("Questions", message_type='user')
)

# Sending parallel inference requests
df = df.with_columns(
answer=inference_async('prompt', provider = Provider.OPENAI, model = 'gpt-4o-mini')
)
```

#### Multi-Message Conversations

Polar Llama now supports multi-message conversations, allowing you to maintain context across multiple turns:

```python
import polars as pl
from polar_llama import string_to_message, combine_messages, inference_messages
import dotenv

dotenv.load_dotenv()

# Create a dataframe with system prompts and user questions
df = pl.DataFrame({
"system_prompt": [
"You are a helpful assistant.",
"You are a math expert."
],
"user_question": [
"What's the weather like today?",
"Solve x^2 + 5x + 6 = 0"
]
})

# Convert to structured messages
df = df.with_columns([
pl.col("system_prompt").invoke("string_to_message", message_type="system").alias("system_message"),
pl.col("user_question").invoke("string_to_message", message_type="user").alias("user_message")
])

# Combine into conversations
df = df.with_columns(
pl.invoke("combine_messages", pl.col("system_message"), pl.col("user_message")).alias("conversation")
)

# Send to model and get responses
df = df.with_columns(
pl.col("conversation").invoke("inference_messages", provider="openai", model="gpt-4").alias("response")
)
```

#### AWS Bedrock Support

Polar Llama now supports AWS Bedrock models. To use Bedrock, ensure you have AWS credentials configured (via AWS CLI, environment variables, or IAM roles):

```python
import polars as pl
from polar_llama import string_to_message, inference_async
import dotenv

dotenv.load_dotenv()

# Example questions
questions = [
'What is the capital of France?',
'Explain quantum computing in simple terms.'
]

# Creating a dataframe with questions
df = pl.DataFrame({'Questions': questions})

# Adding prompts to the dataframe
df = df.with_columns(
prompt=string_to_message("Questions", message_type='user')
)

# Using AWS Bedrock with Claude model
df = df.with_columns(
answer=inference_async('prompt', provider='bedrock', model='anthropic.claude-3-haiku-20240307-v1:0')
)
```

#### Benefits

- **Speed**: Processes multiple queries in parallel, drastically reducing the time required for bulk query handling.
- **Scalability**: Scales efficiently with the increase in number of queries, ideal for high-demand applications.
- **Ease of Integration**: Integrates seamlessly into existing Python projects that utilize Polars, making it easy to add parallel processing capabilities.
- **Context Preservation**: Maintain conversation context with multi-message support for more natural interactions.
- **Provider Flexibility**: Choose from multiple LLM providers based on your needs and access.

#### Contributing

We welcome contributions to Polar Llama! If you're interested in improving the library or adding new features, please feel free to fork the repository and submit a pull request.

#### License

Polar Llama is released under the MIT license. For more details, see the LICENSE file in the repository.

#### Roadmap

- [x] **Multi-Message Support**: Support for multi-message conversations to maintain context.
- [x] **Multiple Provider Support**: Support for different LLM providers (OpenAI, Anthropic, Gemini, Groq, AWS Bedrock).
- [ ] **Function Calling**: Add support for using the function calls and structured data outputs for inference requests.
- [ ] **Streaming Responses**: Support for streaming responses from LLM providers.